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Our goal is to verify implementations of 
mainstream cryptographic protocols 

This talk: new proofs and attacks on TLS 
•  miTLS [Crypto’14] 
•  Skip, Freak [Oakland’15] 
•  Logjam  

 



2015      TLS1.3? 

OpenSSL, SecureTransport, NSS,  
SChannel, GnuTLS, JSSE, PolarSSL, … 
many bugs, attacks, patches every year

 
mostly for small simplified models of TLS 



Threat modelSecurity Goal
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infrastructure  
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Many obsolete crypto 
constructions 
• 

• 

• 

• 

• 

Countermeasures 
•  Disable these features: 

SSL3, compression, RC4 
•  Implement ad-hoc mitigations 

very very carefully:  
•  empty fragment to initialize 

IV for TLS 1.0 AES-CBC  
•  constant time mitigation for 

Bleichenbacher attacks 
•  constant-time plaintext 

length-hiding HMAC to 
prevent Lucky 13 

 
 
 
 
 



Memory safety  
Buffer overruns leak secrets 
Missing checks  
Forgetting to verify 
signature/MAC/certificate 
bypasses crypto guarantees 
Certificate validation 
ASN.1 parsing,  
wildcard certificates 
State machine bugs 
Most TLS implementations 
don’t conform to spec 
Unexpected transitions 
break protocol (badly) 
 



 
Use formal methods! 

 
 

•  Use a type-safe programming language 
•  F#, OCaml, Java, C#,…  
•  (No buffer overruns, no Heartbleed) 

•  Verify the logical correctness of your code 
•  Use a software verifier: F7/F*, Why3, Boogie, Frama-C,… 

•  Link software invariants to cryptographic guarantees 
•  Use a crypto verifier: EasyCrypt, CryptoVerif, ProVerif 
•  Hire a cryptographer!  





Security for TLS-DHE + 
authenticated encryption in the standard model 

Security for TLS-
DHE + TLS-RSA + authenticated encryption 

Comprehensive modular 
treatment of a TLS handshake implementation





  KEM 

DHGroup 

DH 

KEF 

KDF/
MAC 

RSA 

Cert 

Sig 

SessionDB StAE 

LHAE 

Enc 

MAC 

Record 

Dispatch 

TCP 

Untyped Adversary 

Encode 

LHAEPlain 

StPlain 

TLSFragment Alert 
Datastream Handshake (and CCS) 

TLSInfo TLSConstants 

Handshake/CCS 

TLS 
Record 

AppData 

Base Bytes 

Untyped API 
Adversary 

RPC 

RPCPlain Application 

TLS API 

Alert 
Protocol 

AppData 
Protocol 

Nonce 

TLS 

CoreCrypto 

RSAKey 

Auth 

AuthPlain 

Extensions 

1 

2 

3 4 5 

6 7 

Range 

8 

9 
Error 



security specification 
- 

- 

type	  Connection	  //	  for	  each	  local	  instance	  of	  the	  protocol	  
type	  (;c:Connection)	  AppData	  

//	  creating	  new	  client	  and	  server	  instances	  
val	  connect:	  TcpStream	  -‐>	  Params	  -‐>	  Connection	  
val	  accept:	  	  TcpStream	  -‐>	  Params	  -‐>	  Connection	  

//	  reading	  data	  	  	  
type	  (;c:Connection)	  IOResult_i	  =	  
|	  Read	  	  	  	  	  	  of	  c':Connection	  *	  data:(;c)	  AppData 	  	  
|	  CertQuery	  of	  c':Connection	   	   	  	  
|	  Complete	  	  of	  c':Connection	  {	  Agreement(c’)	  } 	   	  	  
|	  Close	  	  	  	  	  of	  TcpStream 	  	  	   	  	  
|	  Warning	  	  	  of	  c':Connection	  *	  a:AlertDescription	  
|	  Fatal	  	  	  	  	  of	  a:AlertDescription	   	  	  
val	  read	  :	  c:Connection	  -‐>	  (;c)	  IOResult_i	  
	  
//	  writing	  data	  	  	  
type	  (;c:Connection,data:(;c)	  AppData)	  IOResult_o	  =	  
|	  WriteComplete	  of	  c':Connection	   	   	  	  
|	  WritePartial	  	  of	  c':Connection	  *	  rest:(;c')	  AppData	  
|	  MustRead	  	  	  	  	  	  of	  c':Connection	  
val	  write:	  c:Connection	  -‐>	  data:(;c)	  AppData	  -‐>	  (;c,data)	  IOResult_o	  
	  
//	  triggering	  new	  handshakes,	  and	  closing	  connections	  
val	  rehandshake:	  c:Connection	  -‐>	  Connection	  Result	  
val	  request:	  	  	  	  	  c:Connection	  -‐>	  Connection	  Result	  
val	  shutdown:	  	  	  	  c:Connection	   	  TcpStream	  Result	  



concrete TLS & ideal 
TLS are computationally  
indistinguishable

using standard program 
verification (typing) 

miTLS 
implementation 
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Safe, except for a  
negligible probability 

Safe by typing 
(info-theoretically) 



7,000 lines of F#  
checked against 
3,000 lines of F7 
type annotations 
+ 
3,000 lines of EasyCrypt 
for the core key exchange 
 
Ongoing work  
ECDHE, GCM, Certificates, Side-channels

miTLS 
implementation 
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RSA 
(EC)DHE 



RSA + DHE + ECDHE 
+ Session Resumption 
+ Client Authentication

miTLS
[IEEE S&P’13, CRYPTO’14] 

Can this proof technique be 
applied to OpenSSL? 

State machine  
for common 
Web configurations 



+ Fixed_DH  
+ DH_anon  
+ PSK  
+ SRP  
+ Kerberos 
+ *_EXPORT  
+ … 
We cannot  
ignore all these 
because they 
share code/keys  
with RSA/DHE 



Does OpenSSL conform to 
the miTLS state machine?

We built a test framework 

 

State machine  
for common 
Web configurations 



Unexpected state transitions 
in OpenSSL, NSS, Java, 
SecureTransport, … 
•  Required messages are 

allowed to be skipped 
•  Unexpected messages are 

allowed to be received 
•  CVEs for many libraries 
How come all these bugs? 
•  In independent code bases, 

sitting in there for years 
•  Are they exploitable? 
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Culprit: 

TLS specifies a ladder diagram with optional messages 
•  Handshake ends with agreement on transcript 



RSA 
(EC)DHE 



Treat ServerKeyExchange as optional 
•  Server decides to send it or not 
•  Client tries to handle both cases 
•  Consistent with Postel’s principle:  

“be liberal in what you accept” 
 
Unexpected cases at the client 

 
Clients should reject these cases 
•  In practice: clients accept and perform 

unexpected cryptographic computations,  
breaking the security of TLS  

  



Network attacker impersonates 
S.com to a Java TLS client 
1.  Send S’s cert 
2.  SKIP ServerKeyExchange 

(bypass server signature) 
3.  SKIP ServerHelloDone 
4.  SKIP ServerCCS 

(bypass encryption) 
5.  Send ServerFinished 

using uninitialized MAC key 
(bypass handshake integrity) 

6.  Send ApplicationData 
(unencrypted) as S.com 



TLS 1.0 supported weakened 
ciphers to comply with export 
regulations in 1990s 

EXPORT deprecated in 2000

•  Can be triggered by sending an 
unexpected ServerKeyExchange 
 



A man-in-the-middle attacker can: 
•  impersonate servers that support RSA_EXPORT,  
•  at buggy clients that allow ServerKeyExchange in RSA  



Many servers in 2015 offer RSA_EXPORT 
•  37% of browser-trusted servers in March 2015 
•  After FREAK: came down to  6.5% [Zmap team, 2015] 
•  See: www.smacktls.com/#freak 
•  Vulnerable sites included nsa.gov, hsbc.com, … 
 
Factoring 512-bit RSA keys is easy 
•  First broken with CADO-NFS in 2000 [EuroCrypt’00] 
•  Now: 12 hours and $100 on Amazon EC2 [N. Heninger]  

Client-side state machine bugs are widespread 
•  Same bug in SChannel, SecureTransport, IBM JSSE, … 
•  CVEs for all major libraries and web browsers 

 
 
 

 



Yet another 
export-grade 
cipher in TLS  

•  Protocol flaw: 
Messages 
look the same 
as regular 
DHE!  
 



A man-in-the-middle attacker can: 
•  impersonate servers that support DHE_EXPORT,  
•  at ALL clients that accept 512-bit DH groups 

512-bit discrete logs a bit harder 
than factoring RSA-512 
First broken with CADO-NFS in 2014   
Now: 2 weeks of precomputation on 
Grid5000 + 90 seconds for each key  



Of course, many servers still offer DHE_EXPORT 
•  8.4% of Alexa Top 1M websites in March 2015 
•  Vulnerable sites included fbi.gov, tcl.tk, …  
•  See demos at weakdh.org 
 
New worry: 768-bit,1024-bit discrete logs are feasible 
•  768-bits would require months of precomputation 
•  1024-bits would require supercomputers  
•  IPsec, SSH, TLS all use 768-bit and 1024-bit primes!  
 
Security updates to major browsers and websites 
•  Disabling 512-bit, then 768-bit, then 1024 bit 
•  Move to 20148-bit freshly-generated safe primes 
 
 

 







OpenSSL has two state machines (client/server) 
•  A bit of a mess: many protocol versions,  

extensions, optional, and experimental features 
 
We rewrote this code and verified it with Frama-C 
•  750 lines of code, 460 lines of specification 
•  1 month of a PhD student’s time 
•  Reused logical specification from miTLS 
•  Eliminates all state machine bugs in OpenSSL 
•  No impact on performance! 
 
  
 

 



Stronger key exchanges, fewer options 
•  ECDHE and DHE by default, no RSA key transport 
•  Strong DH groups (> 2047 bits) and EC curves (> 255 bits) 
•  Only AEAD ciphers (AES-GCM), no CBC, no RC4 

 
Signatures, session keys bound to handshake params 
•  Session hash for key derivation (proposed by us) 
•  Server signature covers ciphersuite (preventing Logjam) 

 
Faster: lower latency with 1 round-trip 
•  0-round trip mode also available 
•  Security analysis ongoing  
 

  
 

 



Cryptographic protocol testing needs work 
•  We used a specification-driven fuzzing tool to find 

critical state machine bugs in a number of libraries 
•  This should be done systematically by developers 

Open source code is not immune from attack 
•  Security bugs can hide in plain sight for years  

Verification of production code is feasible 
•  We focused on the core state machine,  

one small step towards verifying OpenSSL 
 
Beware of deliberately weakened cryptography 
•  Backdoors come back to bite you even decades later 
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