
Skip, Freak, and Logjam:
Finding and Preventing attacks on TLS

Karthikeyan Bhargavan
+ many, many others.
(INRIA, LORIA, Microsoft Research, IMDEA,
 Univ of Pennsylvania, Univ of Michigan, JHU)

http://smacktls.com
http://weakdh.org
http://mitls.org

Our goal is to verify implementations of
mainstream cryptographic protocols

This talk: new proofs and attacks on TLS
•  miTLS [Crypto’14]
•  Skip, Freak [Oakland’15]
•  Logjam

2015 TLS1.3?

OpenSSL, SecureTransport, NSS,
SChannel, GnuTLS, JSSE, PolarSSL, …
many bugs, attacks, patches every year

mostly for small simplified models of TLS

Threat modelSecurity Goal

connect(server,port);

send(d1);

send(d2);

send(d3);

…

accept(port);

d1’ = recv();

d2’ = recv();

d3’ = recv();

…

authentication
infrastructure

Security Goal

X.509 public-key
infrastructure

connect(server,port);

send(d1);

send(d2);

send(d3);

…

accept(port);

d1’ = recv();

d2’ = recv();

d3’ = recv();

…

Client Server

Client Server

Client Server

Many obsolete crypto
constructions
• 

• 

• 

• 

• 

Countermeasures
•  Disable these features:

SSL3, compression, RC4
•  Implement ad-hoc mitigations

very very carefully:
•  empty fragment to initialize

IV for TLS 1.0 AES-CBC
•  constant time mitigation for

Bleichenbacher attacks
•  constant-time plaintext

length-hiding HMAC to
prevent Lucky 13

Memory safety
Buffer overruns leak secrets
Missing checks
Forgetting to verify
signature/MAC/certificate
bypasses crypto guarantees
Certificate validation
ASN.1 parsing,
wildcard certificates
State machine bugs
Most TLS implementations
don’t conform to spec
Unexpected transitions
break protocol (badly)

Use formal methods!

•  Use a type-safe programming language
•  F#, OCaml, Java, C#,…
•  (No buffer overruns, no Heartbleed)

•  Verify the logical correctness of your code
•  Use a software verifier: F7/F*, Why3, Boogie, Frama-C,…

•  Link software invariants to cryptographic guarantees
•  Use a crypto verifier: EasyCrypt, CryptoVerif, ProVerif
•  Hire a cryptographer!

Security for TLS-DHE +
authenticated encryption in the standard model

Security for TLS-
DHE + TLS-RSA + authenticated encryption

Comprehensive modular
treatment of a TLS handshake implementation

 KEM

DHGroup

DH

KEF

KDF/
MAC

RSA

Cert

Sig

SessionDB StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment Alert
Datastream Handshake (and CCS)

TLSInfo TLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlain Application

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4 5

6 7

Range

8

9
Error

security specification
- 

- 

type	 Connection	 //	 for	 each	 local	 instance	 of	 the	 protocol	
type	 (;c:Connection)	 AppData	

//	 creating	 new	 client	 and	 server	 instances	
val	 connect:	 TcpStream	 -‐>	 Params	 -‐>	 Connection	
val	 accept:	 	 TcpStream	 -‐>	 Params	 -‐>	 Connection	

//	 reading	 data	 	 	
type	 (;c:Connection)	 IOResult_i	 =	
|	 Read	 	 	 	 	 	 of	 c':Connection	 *	 data:(;c)	 AppData 	 	
|	 CertQuery	 of	 c':Connection	 	 	 	
|	 Complete	 	 of	 c':Connection	 {	 Agreement(c’)	 } 	 	 	
|	 Close	 	 	 	 	 of	 TcpStream 	 	 	 	 	
|	 Warning	 	 	 of	 c':Connection	 *	 a:AlertDescription	
|	 Fatal	 	 	 	 	 of	 a:AlertDescription	 	 	
val	 read	 :	 c:Connection	 -‐>	 (;c)	 IOResult_i	
	
//	 writing	 data	 	 	
type	 (;c:Connection,data:(;c)	 AppData)	 IOResult_o	 =	
|	 WriteComplete	 of	 c':Connection	 	 	 	
|	 WritePartial	 	 of	 c':Connection	 *	 rest:(;c')	 AppData	
|	 MustRead	 	 	 	 	 	 of	 c':Connection	
val	 write:	 c:Connection	 -‐>	 data:(;c)	 AppData	 -‐>	 (;c,data)	 IOResult_o	
	
//	 triggering	 new	 handshakes,	 and	 closing	 connections	
val	 rehandshake:	 c:Connection	 -‐>	 Connection	 Result	
val	 request:	 	 	 	 	 c:Connection	 -‐>	 Connection	 Result	
val	 shutdown:	 	 	 	 c:Connection	 	 TcpStream	 Result	

concrete TLS & ideal
TLS are computationally
indistinguishable

using standard program
verification (typing)

miTLS
implementation

miTLS typed API

Bytes,
Network

lib.fs
Cryptographic

Provider
cryptographic assumptions

any program
representing the

adversary

applica&on	
data	 stream	

miTLS ideal
implementation

miTLS typed API

applica&on	

Safe, except for a
negligible probability

Safe by typing
(info-theoretically)

7,000 lines of F#
checked against
3,000 lines of F7
type annotations
+
3,000 lines of EasyCrypt
for the core key exchange

Ongoing work
ECDHE, GCM, Certificates, Side-channels

miTLS
implementation

miTLS typed API

Bytes,
Network

lib.fs
Cryptographic

Provider
cryptographic assumptions

any program
representing the

adversary

applica&on	
data	 stream	

miTLS ideal
implementation

miTLS typed API

applica&on	

RSA
(EC)DHE

RSA + DHE + ECDHE
+ Session Resumption
+ Client Authentication

miTLS
[IEEE S&P’13, CRYPTO’14]

Can this proof technique be
applied to OpenSSL?

State machine
for common
Web configurations

+ Fixed_DH
+ DH_anon
+ PSK
+ SRP
+ Kerberos
+ *_EXPORT
+ …
We cannot
ignore all these
because they
share code/keys
with RSA/DHE

Does OpenSSL conform to
the miTLS state machine?

We built a test framework

State machine
for common
Web configurations

Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, …
•  Required messages are

allowed to be skipped
•  Unexpected messages are

allowed to be received
•  CVEs for many libraries
How come all these bugs?
•  In independent code bases,

sitting in there for years
•  Are they exploitable?

Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, …
•  Required messages are

allowed to be skipped
•  Unexpected messages are

allowed to be received
•  CVEs for many libraries
How come all these bugs?
•  In independent code bases,

sitting in there for years
•  Are they exploitable?

Culprit:

TLS specifies a ladder diagram with optional messages
•  Handshake ends with agreement on transcript

RSA
(EC)DHE

Treat ServerKeyExchange as optional
•  Server decides to send it or not
•  Client tries to handle both cases
•  Consistent with Postel’s principle:

“be liberal in what you accept”

Unexpected cases at the client

Clients should reject these cases
•  In practice: clients accept and perform

unexpected cryptographic computations,
breaking the security of TLS

Network attacker impersonates
S.com to a Java TLS client
1.  Send S’s cert
2.  SKIP ServerKeyExchange

(bypass server signature)
3.  SKIP ServerHelloDone
4.  SKIP ServerCCS

(bypass encryption)
5.  Send ServerFinished

using uninitialized MAC key
(bypass handshake integrity)

6.  Send ApplicationData
(unencrypted) as S.com

TLS 1.0 supported weakened
ciphers to comply with export
regulations in 1990s

EXPORT deprecated in 2000

•  Can be triggered by sending an
unexpected ServerKeyExchange

A man-in-the-middle attacker can:
•  impersonate servers that support RSA_EXPORT,
•  at buggy clients that allow ServerKeyExchange in RSA

Many servers in 2015 offer RSA_EXPORT
•  37% of browser-trusted servers in March 2015
•  After FREAK: came down to 6.5% [Zmap team, 2015]
•  See: www.smacktls.com/#freak
•  Vulnerable sites included nsa.gov, hsbc.com, …

Factoring 512-bit RSA keys is easy
•  First broken with CADO-NFS in 2000 [EuroCrypt’00]
•  Now: 12 hours and $100 on Amazon EC2 [N. Heninger]

Client-side state machine bugs are widespread
•  Same bug in SChannel, SecureTransport, IBM JSSE, …
•  CVEs for all major libraries and web browsers

Yet another
export-grade
cipher in TLS

•  Protocol flaw:
Messages
look the same
as regular
DHE!

A man-in-the-middle attacker can:
•  impersonate servers that support DHE_EXPORT,
•  at ALL clients that accept 512-bit DH groups

512-bit discrete logs a bit harder
than factoring RSA-512
First broken with CADO-NFS in 2014
Now: 2 weeks of precomputation on
Grid5000 + 90 seconds for each key

Of course, many servers still offer DHE_EXPORT
•  8.4% of Alexa Top 1M websites in March 2015
•  Vulnerable sites included fbi.gov, tcl.tk, …
•  See demos at weakdh.org

New worry: 768-bit,1024-bit discrete logs are feasible
•  768-bits would require months of precomputation
•  1024-bits would require supercomputers
•  IPsec, SSH, TLS all use 768-bit and 1024-bit primes!

Security updates to major browsers and websites
•  Disabling 512-bit, then 768-bit, then 1024 bit
•  Move to 20148-bit freshly-generated safe primes

OpenSSL has two state machines (client/server)
•  A bit of a mess: many protocol versions,

extensions, optional, and experimental features

We rewrote this code and verified it with Frama-C
•  750 lines of code, 460 lines of specification
•  1 month of a PhD student’s time
•  Reused logical specification from miTLS
•  Eliminates all state machine bugs in OpenSSL
•  No impact on performance!

Stronger key exchanges, fewer options
•  ECDHE and DHE by default, no RSA key transport
•  Strong DH groups (> 2047 bits) and EC curves (> 255 bits)
•  Only AEAD ciphers (AES-GCM), no CBC, no RC4

Signatures, session keys bound to handshake params
•  Session hash for key derivation (proposed by us)
•  Server signature covers ciphersuite (preventing Logjam)

Faster: lower latency with 1 round-trip
•  0-round trip mode also available
•  Security analysis ongoing

Cryptographic protocol testing needs work
•  We used a specification-driven fuzzing tool to find

critical state machine bugs in a number of libraries
•  This should be done systematically by developers

Open source code is not immune from attack
•  Security bugs can hide in plain sight for years

Verification of production code is feasible
•  We focused on the core state machine,

one small step towards verifying OpenSSL

Beware of deliberately weakened cryptography
•  Backdoors come back to bite you even decades later

mitls.org
smacktls.com
weakdh.org

