HARDSPLOIT
Framework for Hardware Security Audit

a bridge between hardware & a software pentester
Who we are?

• Julien MOINARD
 - Electronic engineer @opale-security (French company)
 - Security consultant, Hardware & Software pentester
 - Team project leader of Hardsploit
 - DIY enthusiast
 - Blackhat, NullCon, HIP, CansecWest, 32C3 speaker & trainer

• Yann ALLAIN
 - CEO
 - Blackhat, HackInThebox, HIP, speaker & trainer
 - Cybersecurity veteran (+ 20 years) / (old) electronic engineer
 - Former CSO of ACCOR (software domain)
Opale Security in 1 slide

A PRAGMATIC APPROACH FOR YOUR IT & IoT SECURITY

TRAININGS CONSULTING PRODUCTS

WWW.OPALE-SECURITY.COM
CONTACT@OPALE-SECURITY.COM +33 (0)9 53 22 99 64

16/03/2016
Internet of Things & Privacy concern?

• Any IoT object could reveal information about individuals

• **Wearable Technology:** clothes, watches, contact lenses with sensors, microphones with cameras embedded and so on

• **Quantified Self:** pedometers, sleep monitors, and so on

• **Home Automation:** connected households using smart fridges, smart lighting and smart security systems, and so on

• …
Internet of Things & Privacy concern?

• Last news: (you can update this slide every week 😅)

VTech was hacked in November, exposing millions of accounts.

In response, the firm took some essential services offline, meaning products could not be registered on Christmas Day.

Firmware can be read without any problem (SPI memory)
IoT Eco-system (20000 feet view)

- Privacy Risk level: Where?

HF communication (ISM Band) + Wifi + 3G-5G, Bluetooth, Sigfox, Lora etc..

Classical wired connections

Central servers, User Interface, API, Backoffice etc.

16/03/2016
Security speaking, hardware is the new software?

SOFTWARE
To secure it:
• Security products (Firewall, Antivirus, IDS, ...)
• Security services (Pentest, Audit, ...)
• Tools (Uncountable number of them)

HARDWARE
To secure it:
• Few or unimplemented solutions (Encryption with key in a secure area, anti-replay mechanisms, readout protection, ...)

16/03/2016
Hardsploit & hardware hacking basic procedure

• 1/ Open it
• 2/ Fingerprint all the component if you can else automatic brute forcing
• 3/ Use those that may contain data (Online / Offline analysis ?)
• 4/ Perform read | write operation on them
• 5/ Reverse engineering, find vulnerabilities and exploit them

16/03/2016
Global Purpose

DUMP ALL THE DATA
Why?

• Because chips contain interesting / private data
 • Passwords
 • File systems
 • Firmware
 • ...

```
000000 0000 0001 0001 1010 0010 0001 0004 0128
0000010 0000 0016 0000 0028 0000 0010 0000 0020
0000020 0000 0001 0004 0000 0000 0000 0000 0000
0000030 0000 0000 0000 0010 0000 0000 0000 0020
0000040 0004 8384 0084 c7c8 00c8 4748 0048 e8e9
0000050 00e9 6a69 0069 a8a9 00a9 2828 0028 fd9c
0000060 00fc 1819 0019 9898 0098 d9d8 00d8 5857
0000070 0057 7b7a 007a bab9 00b9 3a3c 003c 8888
0000080 8888 8888 8888 8888 288e be88 8888 8888
0000090 3b83 5788 8888 8888 7667 778e 8828 8888
00000a0 d61f 7abd 8818 8888 467c 585f 8814 8188
00000b0 8b06 e8f7 88aa 8388 8b3b 88f3 88bd e988
00000c0 8a18 880c e841 c988 b328 6871 688e 958b
00000d0 a948 5862 5884 7e81 3788 1ab4 5a84 3e9c
00000e0 3d86 dcb8 5cbb 8888 8888 8888 8888 8888
00000f0 8888 8888 8888 8888 8888 8888 8888 8888
0000100 0000 0000 0000 0000 0000 0000 0000 0000
* 0000130 0000 0000 0000 0000 0000 0000 0000 0000
000013e
```
How?

• A hardware pentester need to know electronic buses and he need to be able to interact with them

1-Wire

16/03/2016
Hardsploit framework

Same hardware but a software update is needed to add a new protocols
Hardsploit bus identification & scanner
(in progress, not published yet)

Click to hack audit hardware
Tool of trade

<table>
<thead>
<tr>
<th>FUNCTIONALITIES</th>
<th>BUSPIRATE</th>
<th>JTAGULATOR</th>
<th>GOOFET</th>
<th>HARDSPLOIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>SPI</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>PARALLEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>I2C</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>JTAG / SWD</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

MODULARITY
- Microcontroller
- Microcontroller
- Microcontroller
- uC / FPGA

EASE OF USE
- Cmd line + datasheet
- Command line
- Command line
- Official GUI / API / DB

I/O NUMBER
- < 10
- 24
- < 14
- 64 (plus power)

WIRING
- TEXT (but MOSI = SDA)
- TEXT / AUTOMATIC identification
- TEXT
- LED / TEXT / AUTOMATIC identification

16/03/2016
Hardsploit: Communication

Graphical interface (QT)

- GUI RUBY
- API RUBY
- PC
- Microcontroller

- FPGA memory
- SPI 15Mhz
- Data SPI 30Mhz
- Control SPI 15Mhz

- High level layer communication
- Low level layer communication

- USB 2.0
 - Full Speed (12 Mbits/s)

FPGA

- Bridge between any module and SPI Control & Data
- For microcontroller communication

Wiring module

- Compatible buses

- Set 64 led status
- Get 64 led status
- Sniffing
- Read
- Write
- Custom Commands

Input / Output & Led for Assistance wiring

64 GPIO

TARGET

16/03/2016
Prototype making

• Applying soldering paste (low budget style)
Prototype making

• Manual reflow oven (DIY style)

16/03/2016
Prototype V0.1 aka The Green Goblin 😊
Prototype making (with a budget)

- The rebirth
The board – Final version

- 64 I/O channels
- ESD Protection
- Target voltage: 3.3 & 5V
- Use a Cyclone II FPGA
- USB 2.0
- 20cm x 9cm
Hardsploit organization
Chip management

- Search
- Create
- Modify
- Interact
Wiring helper

Datasheet representation

Harsploit Wiring module representation

GUI <-> Board interaction

16/03/2016
Settings

Hardsploit - I²C settings

24LC64 PARAMETERS

Base address (W): A2
Base address (R): A3
Frequency (Khz): 400
Total size: 8192
Bus scan: Launch

Address	R/W

Save

Cancel

Hardsploit - Bus settings

25LC640 PARAMETERS

Page size: Total size (8 bits word): 4096
Frequency (Mhz): 1.00 Mode: 1
SPI command read: 3

Save

Hardsploit - Parallel setting...

P33-65nm PARAMETERS

Total size: 120000
Read latency: 1600
Write latency: in nanoseconds
Word size: 16 bits
Page size: 0

Save

Cancel

16/03/2016
Command editor

Hotsplot - Commands

Current chip: 24LC64

Name	Description
1. Pointer | Write pointer of I2C memory at 0x00 0x00
2. Code | Read the first four bytes inside the I2C memory
3. Write 2 bytes at 2050 | Write 2 bytes at 2050
4. Read 2 bytes at 2050 | Read 2 bytes at 2050
5. Write chipno at 0x0 | Write chipno at 0x0
6. Write 1 | Write the number 1 at 0x6
7. Write 2 | Write the number 2
8. Write 3 | Write the number 3
9. Write 4 | Write the number 4
10. READ PASSWORD | Read training board password

Command bytes array:

<table>
<thead>
<tr>
<th>Order</th>
<th>Byte (Hexa)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Payload size - low</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Payload size - high</td>
</tr>
<tr>
<td>3</td>
<td>A0</td>
<td>Read address</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>Payload byte</td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>Payload byte</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Payload size - low</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Payload size - high</td>
</tr>
<tr>
<td>8</td>
<td>A1</td>
<td>Read address</td>
</tr>
</tbody>
</table>

16/03/2016
What are available on github (Open) ?

- Microcontroller (c)
- API (ruby)
- GUI (ruby)
- Create your own Hardsploit module : VHDL & API (ruby)
Already available (github)

Parallel non multiplexed memory dump
 • 32 bits for address
 • 8/16 bits for data

Helping wiring
I2C 100Khz 400Khz and 1 Mhz
 • Addresses scan
 • Read, write, automatic full and partial dump

SPI mode 0,1,2,3 up to 25 Mhz
 • Read, write, automatic full and partial dump

SWD interface (like JTAG but for ARM core)
 • Dump and write firmware of most ARM CPU

GPIO interact / bitbanging (API only for the moment)
 • Low speed < 500Hz read & write operations on 64 bits

16/03/2016
More to come (see online roadmap)...

- Automatic bus indentification & Scanner (@30%)
- Component & commands sharing platform (@90%)
- TTL UART Module with automatic detection speed (@80%)
- Parallel communication with multiplexed memory
- I2C sniffing (shot of 4000 bytes up to 1 Mhz)
- SPI sniffing (shot of 8000 / 4000 byte half / full up to 25Mhz)
- RF Wireless transmission training plateform (Nordic NRF24, 433Mhz, 868Mhz transcievers)
- Metasploit integration (module) ??
- JTAG
- 1 Wire
- CanBUS (with hardware level adapter)
- ...

16/03/2016
Concrete case

• An electronic lock system
• 4 characters pin code A – B – C – D
 • Good combinaison – Door opens, green L.E.D turn on
 • Wrong combinaison – Door closes, red L.E.D turn on
Concrete case: Open it
Concrete case: Fingerprint

STM32F103RBT6

SPI MEMORY 25LC08

I2C MEMORIES 24LC64
Concrete case: Online / Offline analysis ?

16/03/2016
Concrete case: hardsploit scenario

1. Open Hardsploit to create the component (if not exist)
2. Connect the component to Hardsploit (wiring helping)
3. Enter and save the component settings (if not exist)
4. Dump the content of the memories (1 click)
5. Change the door password by using commands (few clicks)
6. Try the new password on the lock system (enjoy)
Concrete case:
Read | Write operation, I2C, SPI, SWD ...

• Time for a live demo?
Parallel bus memory
Concrete case: Fingerprint
Concrete case: Offline analysis
Concrete case: Ready to dump the content

16/03/2016
Conclusion

• IoT Device are (also) prone to vulnerabilities help you to find them
• Security policy need to be adapted, nowadays, it is not so difficult to extract data on IoT
• Designers need to design with security in mind
• Skills related to pentest a hardware device is mandatory for Security Experts (but training exist)
• Industry need to take care about device security
Thank you!

Hardsploit board is available at shop-hardsploit.com (250 € / 277 USD / 370 CAD excluding VAT)
To learn more about Hardsploit and follow the development

Hardsploit.io & Opale-Security.com

• Yann ALLAIN (CEO)
 • yann.allain@opale-security.com
 • +33 6 45 45 33 81

• Julien MOINARD (Project leader of Hardsploit)
 • julien.moinard@opale-security.com
 • +33 9 72 43 87 07

Hardware & Software, Pentest, Audit, Training

16/03/2016