
IronKey Data Encryption Methods

An IronKey Technical Brief
November 2007

Information
Depth:Technical

Introduction
IronKey is dedicated to building the world’s most secure fl ash drives. Our dedication is
displayed in the attention to detail that our designers have brought to security regimen of the
IronKey to ensure it is invulnerable to known attacks:

The IronKey is provisioned at the factory with a 2,048-bit RSA Device Key Pair, »
which is used to authenticate the device and encrypt all communications between
servers and the device. The key resides on the Cryptochip and is not accessible. This
protects the IronKey against on-the-wire attacks or attempts to access or guess the
device key.

All communications between the IronKey and the host computer across the USB »
port are also encrypted using the RSA 2,048 bit Device Key Pair, minimizing the ability
of sniffers to intercept information during transfer.

IronKeys use a FIPS 140-2 compliant True Random Number Generator to generate »
an AES 128-bit CBC encryption key at the time the device is initialized by the owner.
As a result, no one but the device’s owner can possibly have this encryption key, and
the key is invulnerable to typical attacks on pseudo-random number generators.

The AES key is stored in hardware in the IronKey’s Cryptochip, in a specially pro- »
tected area of non volatile storage, shielded by layers of metal in the chip and further
encrypted using a SHA-256 hash of the user’s password. These keys are never stored
in fl ash memory, on a local computer, or in a database. Because the Cryptochip will
self-destruct if it detects any physical tampering by a thief or hacker, it is protected
against physical attacks.

The device destroys all data after 10 incorrect password attempts. The counter for »
this capability is stored in a specially-protected area of non-volatile storage, and can-
not be reset by any means, including removing and replacing the device from the USB
port.

IronKey’s patent-pending “self-destruct” methodology incorporates an exhaustive »
hardware erase of all fl ash and Cryptochip memory. This is not a simple clearing of
fi le allocation tables, but a secure overwriting of data. This is done in hardware rather
than via a software application for the ultimate protection.

These features, among others, ensure that all of data and the keys stored on the device are
invulnerable to physical access, RNG subversion, and power analysis techniques, as well as
direct cryptanalytic, input based, state compromise, sniffi ng/on-the-wire, meet-in-the-middle,
and replay attacks.

This technical brief explains the logic behind 128-bit CBC encryption as the standard for the
IronKey. The major critical element that distinguishes IronKey’s implementation of AES,
and what allows us to use 128-bit encryption securely, is the mode used for encryption in
combination with the hardware-based storage of the IronKey’s AES encryption keys. The AES
standard allows fi ve encryption modes, Cipher Block Chaining (CBC), Electronic Code Book
(ECB), Cipher Feedback (CFB), Output Feedback (OFB), and Counter (CTR)1 . These modes
were originally specifi ed for the Federal Data Encryption Standard (DES) and are described
in detail in FIPS Publication 812 Some manufacturers use the ECB mode of operation, which
has a higher information leakage rate than CBC mode. Because it is most often implemented
in software on USB devices, ECB mode is potentially less secure even with 256-bit keys than
CBC mode with 128-bit keys generated and stored in hardware.

© 2007 IronKey, Inc. All rights reserved.

It would take 149 tril-
lion years to crack a
128-bit AES key.

- NIST

What kind of data encryption does the IronKey use?
IronKey uses the Advanced Encryption Standard (AES), which is a Federal Information Pro-
cessing Standard (FIPS) that specifi es the cryptographic algorithm for use by U.S. Government
organizations and enterprises to protect sensitive information3.

The AES algorithm is called Rijndael. The National Institute of Standards and Technology
(NIST) went through a rigorous 4 year process of evaluating data encryption algorithms before
settling on the Rijndael algorithm as the Advanced Encryption Standard.

NIST chose Rijndael as the AES based on its combination of security, performance, effi ciency,
ease of implementation and fl exibility.

Specifi cally, Rijndael is consistently a very good performer in both hardware and software
across a wide range of computing environments regardless of its use in feedback or non-
feedback modes. Its key setup time is excellent, and its key agility is good. Rijndael’s very low
memory requirements make it very well suited for restricted-space environments, in which
it also demonstrates excellent performance. Rijndael’s operations are among the easiest to
defend against power and timing attacks.

The AES Rijndael algorithm replaces the DES algorithm as the US Government’s encryption
standard.

What Key Sizes are Supported by the AES Algorithm?
The AES algorithm supports key sizes of 128, 192 and 256 bits.

How Long Would It Take To Crack an AES 128-Bit Key?
In the late 1990s, specialized “DES Cracker” machines were built that could recover a DES key
after a few hours. In other words, by trying possible key values, the hardware could determine
which key was used to encrypt a message.

Assuming that one could build a machine that could recover a single DES key in a second (i.e.,
try 255 keys per second), then it would take that machine approximately 149 thousand-billion
(149 trillion) years to crack a single 128-bit AES key. To put that into perspective, the universe
is believed to be less than 20 billion years old.

The Critical Importance of Using the Right Mode of AES
NIST has defi ned fi ve modes of operation for AES and other FIPS-approved Ciphers:

CBC (Cipher Block Chaining) »
ECB (Electronic Codebook) »
CFB (Cipher Feedback) »
OFB (Output Feedback) »
CTR (Counter) »

IronKey uses the CBC mode of AES, which was originally designed for encrypting large blocks
of data securely. This mode can be very diffi cult to implement in hardware for NAND fl ash
USB fl ash drives, because it requires generating and storing random Initialization Vectors (IV)
for blocks. Use of a randomly generated IV prevents generation of identical ciphertext from
blocks which have identical data that spans the fi rst block of the cipher algorithm’s block size.

© 2007 IronKey, Inc. All rights reserved.

NIST has set fi ve en-
cryption modes for AES.
The two most popular
are Cipher Block Chain-
ing (CBC) and Electron-
ic Code Book (ECB).

AES uses the Rijndael
algorithm, which is a
consistently good per-
former in hardware and
software.

Because of the complexity of implementing the CBC mode of AES in hardware, some USB
fl ash drive competitors have implemented the ECB mode of AES. ECB is much easier to
implement, because it does not require IVs to be calculated and stored. Thus ECB was only
designed to encrypt small blocks of data. AES ECB mode leaks information when used to
encrypt large blocks of data. This is because the same input data will result in identical output
data. This also allows the AES encryption key to be more easily derived by an attacker.
AES CBC mode using a shorter key, such as 128 bits, is far more secure for encrypting large
blocks of data than using ECB mode with a larger key such as 256 bits.

Dr. Bart Preneel, an esteemed cryptographer, has published numerous publications and course
notes regarding the correct way to use an AES block cipher . Below is his illustration of why
ECB mode AES encryption is not secure for encrypting large blocks of data.
Figure 1 is the source plaintext, in this case an image.

Figure 1
Source Plaintext

© 2007 IronKey, Inc. All rights reserved.

ECB mode is easier to
implement, but was de-
signed to encrypt small
data blocks and leaks
information when used
on large data blocks.

Always use cipher block
chaining (CBC) mode
instead of the electronic
code book (ECB) mode

- The Laws of Cryptoraphy

Figure 2 shows this image encrypted with AES ECB mode. It is clear that the image structure
is visible and is highly vulnerable to attack. A larger key size does not make this more secure,
because the same key is used on every block, there is no random IV used on blocks, and thus
the blocks may chain entropy to each other.

Figure 2.
Encrypted With AES in ECB Mode

A larger key size doesn’t
make AES ECB more
secure, as the same key
is used on every block
with no random Initial-
ization Vector.

© 2007 IronKey, Inc. All rights reserved.

Figure 3
Encrypted With AES in CBC Mode

The Importance of Strong Keys
Since cracking data encrypted with IronKey’s 128-bit AES CBC mode encryption is not
feasible, most attacks will focus on getting access to the encryption key itself. The IronKey
prevents these types of attacks by generating the AES key with a hardware-based Random
Number Generator on the device. The AES key is never imported or exported from the
device onto a PC host.

The IronKey stores the AES key in a tamper-resistant Cryptochip, which is designed to with-
stand power analysis attacks, and to self-destruct from physical and electrical attacks. Fur-
thermore, the key itself is encrypted using a SHA256 hash of the user’s password.

Preventing Brute Force Password Guessing
Since attacking the AES encrypted data on an IronKey is unfeasible, and access to the key is
protected by the Cryptochip, the most feasible attack is a password guessing attack. The
IronKey prevents these attacks by implementing password verifi cation and unlocking in hard-
ware. If an attacker enters the password incorrectly 10 times, the CryptoChip initiates a self

Cracking IronKey’s
128-bit AES CBC mode
isn’t feasible. So attacks
on the IronKey will
focus on getting access
to the encryption key.

© 2007 IronKey, Inc. All rights reserved.

IronKey’s hardware
encryption is always on
and cannot be disabled
or tampered with.

Getting at an IronKey’s
AES keys is prevented
by generating the keys
with a hardware-based
True Random Num-
ber Generator on the
device.

destruct process that eliminates access to the AES key, and also erases all the encrypted data
with a low-level NAND fl ash hardware erase.

Conclusion
IronKey’s approach to data encryption using 128-bit CBC encryption is tied closely to the
physical limits of hardware-based encryption on a USB device as well as the overall security
regime underlying the device. When looked at from that perspective, IronKey hardware-
based encryption, combined with an AES 128-bit CBC key, provides the best combination of
strength and performance for IronKey device security.

 1 To understand the concepts behind these modes of operation in detail, see Schneir, Bruce. Applied
Cryptography: Protocols, Algorithms, and Source Code in C, 2nd Edition, (Boston: John Wiley, 1996).

2 “FIPS Publication 81 - Des Modes of Operation” (Washington, DC: US Government Printing Offi ce,
December, 1980). See also http://csrc.nist.gov/publications/fi ps/fi ps81/fi ps81.htm

3 “FIPS Publication 197 – “Announcing the Advanced Encryption Standard.” (Washington, DC: US Gov-
ernment Printing Offi ce, November, 2001). See also http://csrc.nist.gov/publications/fi ps/fi ps197/fi ps197.
htm. Also see other publications listed in the bibliography at the end of this technical brief.

Bibliography
AES
“AES Questions and Answers.” (Washington, DC: US GPO, November, 2001). See also http://www.nist.
gov/public_affairs/releases/aesq&a.htm.

Dworkin, Morris., “Recommendations for Block Cipher Modes of Operation.” (Washington, DC: NIST
Special Publication 800-28A, November, 2001).

“FIPS Publication 197 – “Announcing the Advanced Encryption Standard.” (Washington, DC: US GPO,
November, 2001). See also http://csrc.nist.gov/publications/fi ps/fi ps197/fi ps197.htm.

“FIPS Publication 81 - DES Modes of Operation” (Washington, DC: US Government Printing Offi ce,
December, 1980). See also http://csrc.nist.gov/publications/fi ps/fi ps81/fi ps81.htm.

Soto, Juan Jr., “Randomness Testing of the AES Candidate Algorithms.” (Washington, DC: NIST, 2001).
See also http://www-08.nist.gov/archive/aes/round1/r1-rand.pdf.

AES CBC vs. ECB Encryption
Schneir, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd Edition. (Bos-
ton, John Wiley, 1996)

Bart Praneel’s Home Page: http://homes.esat.kuleuven.be/~preneel/.

http://www.cs.rice.edu/~dwallach/courses/comp527_f2004/week02-2-crypto-intro.pdf
http://crypto.stanford.edu/cs155-spring06/04-crypto.pdf.

Wagner, Neal R., The Laws of Cryptography. (San Antonio, TX: Neal Wagner, 2003). See also http://
www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf.

The information contained in this document represents the current view of IronKey on the issue discussed as of the date of publication. IronKey cannot
guarantee the accuracy of any information presented after the date of publication. This whitepaper is for information purposes only. IronKey makes no warran-
ties, expressed or implied, in this document. IronKey and the IronKey logo are trademarks of IronKey, Inc. in the United States and other countries. All other
trademarks are the properties of their respective owners. © 2007 IronKey, Inc. All rights reserved. IK0030270

Find more information
about IronKey online at:
www.ironkey.com

IronKey, Inc.
5150 El Camino Real, Suite C31
Los Altos, CA 94022 USA
+1 (650) 492-4055
info@ironkey.com

