ANUBIS
A platform for the analysis of malicious code

Ulrich Bayer
ulli@seclab.tuwien.ac.at

Secure Systems Lab - TU Vienna
Agenda

1. Introduction
 Who is behind Anubis?, Project goals

1. Malware Analysis With ANUBIS
 The need for automated malware analysis, static vs. dynamic, Anubis Core functionality

1. The Online Anubis platform
 Submission Statistics, Architectural Overview

1. Advanced Anubis Features
 Data Tainting, Clustering (find malware families)
1. Anubis Reference Projects
 SGNET, WOMBAT

1. Anubis Analysis Issues
 Detection of Anubis/QEmu, Triggers

1. Conclusion and Current Developments
About myself

- Ulrich Bayer, born in Austria
- Studied computer science at the TU Vienna
- Since 2006, PhD student at the TU Vienna
- Currently visiting scientist at Eurecom, France

- Master’s thesis: “TTAnalyze: A Tool For Analyzing Malware”
 - Carried out at the Seclab TU Vienna
 - In cooperation with Ikarus Software
 - Predecessor of ANUBIS
Who's behind ANUBIS (1)

- **International Secure Systems Lab**
 - Research group
 - Online: http://www.iseclab.org
 - Founded in 2005 at the TU Vienna, Austria by
 Engin Kirda, PhD, Assistant Professor at Eurecom, France
 Christopher Kruegel, PhD, Assistant Professor at UCSB, US
 - Research on system security, > 10 PhD students
 e.g., Web-Security, Spam, Malware/Spyware Analysis
 - Now geographically distributed over three locations (Vienna, Eurecom, UCSB)
 - Hosting public ANUBIS website (http://anubis.iseclab.org)
Who's behind ANUBIS (2)

IKARUS Security Software

- Austrian A/V company (based in Vienna)
- Commercial partner and distributor for ANUBIS
- Already funded TTAnalyze, the predecessor of Anubis
- Distribute a commercial version of Anubis

 Trial version is available too.

 More details: anubis@ikarus.at
Anubis Team

- **Main developers**
 - Ulrich Bayer *(Anubis, Database, Webserver, Admin, Clustering)*
 - Florian Nentwich *(Ikarus)*

- **Developers**
 - Paolo Milani Comparetti *(Post-Doc, Clustering)*
 - Clemens Hlauschek *(Clustering)*
 - Valentin Habsburg
 - Sylvester Keil
 - Florian Lukavsky
 - Matthias Neugschwandtner
 - Michael Weissbacher

- **Scientific Advisors**
 - Engin Kirda
 - Christopher Kruegel
Project Goals

- **Seclab**: Research Prototype
 - Access to virus samples
 - Allows us to see current malware behavior
 - Real world operation: Opens new research problems
 - Provides the infrastructure for several other research projects (multiple execution paths, botnet monitoring/detection/analysis, clustering…)
 - Great source of topics for student internships/master thesis

- **Ikarus**: Internal Tool
 - Internal Tool designed to help in the presorting of malware
 - Build in-house high-technological assets
 - Technology Transfer University -> Company
Chapter 2
Malware Analysis With Anubis
Automated Malware Analysis: Why?

- Too much new malware samples/day
 - Really nobody can handle this!
- Automated malware collection (honeypots etc.)

AV-Test.org's Sample Collection Growth

![Graph showing the growth of malware samples from 2004 to 2012.](image)

Legend:
- Growth
- 3 Month Median
- Forecast
Anubis: Core Functionality

- We **run** the binary
 - Dynamic analysis
- in an **emulated** environment
 - Emulation of a complete PC (CPU, hardware devices)
 - Qemu used as emulation environment
 - We’ve installed an out of the box Windows XP SP2
 - Completely transparent to sample
- and we **monitor** its actions
 - System Calls, Windows API calls
Static analysis versus dynamic analysis

- **Static** analysis
 - code is not executed
 - all possible branches can be examined (in theory)
 - quite fast

- Problems of static analysis
 - undecidable in general case, approximations necessary
 - disassembly difficult (particularly for Intel x86 architecture)
 - obfuscated code, packed code
 - self-modifying code
Static analysis versus dynamic analysis

- **Dynamic analysis**
 - code is executed
 - sees instructions that are actually executed

- **Problems of dynamic analysis**
 - in general, single path (execution trace) is examined
 - analysis environment possibly not *invisible*
 - analysis environment possibly not *comprehensive*
 - scalability issues
Anubis Analysis-Report

- **File Activities**
 - Read, write, create,…

- **Registry Activities**
 - Create, change, delete a registry key/value

- **Process Activities**
 - create, terminate, inter-process communication

- **Windows Service Activities**
 - Start or Stop Windows Services

- **Network Activities**
 - DNS, HTTP/FTP Downloads, SMTP/IRC conversations, …

- Let’s look at an example Anubis report [1]
Benefits of ANUBIS

- **Detailed reports after 4 min.**
 - Manual in-depth analysis > 72h (no code obfuscation!)

- **ANUBIS uses sandbox technology**
 - Non-intrusive inspection from "outside" leads to better results
 - Classic VM detection doesn’t always work (VMware, Virtual PC)
 - Though ANUBIS detection is possible (more on that later…)

- **But ANUBIS still requires experts for operations**
 - Management summary on top of the report gives quick overview
 - Interpretation of detailed reports still needs expert know-how
Chapter 3

The online ANUBIS platform
http://anubis.iseclab.org
Submitted File Types

- DLL Files: 8.4%
- Drivers: 0.5%
- Executables: 76.7%
- ZIP archives: 1.9%
- RAR archives: 2.8%
- HTML files: 3.1%
- Other: 6.7%
Architecture and Capabilities

- **ANUBIS has 5 primary building blocks**
 - **Web/DB Server**
 - HTTP(s) frontend (upload/admin)
 - Relational DB stores reports and references to samples
 - **Malware Sample Storage**
 - Archives uploaded and already analyzed samples
 - **Report Storage**
 - Archives report/result files (traffic dumps, downloaded files...)
 - **Victim Server**
 - Acts as local honeypot for certain services
 - **Worker (VM) Images**
 - Does all the analysis work!
Chapter 4

Advanced ANUBIS features
Advanced Features

- Records and analyzes network traffic
 - HTTP, FTP, SMTP, IRC, …
- Storage of analysis reports in relational DB
 - What Servers have been contacted, what files created, …
- Several Report Formats
 - XML, HTML, MHT, PDF, TXT
- URL Analysis
- Tracking of data flows (more info later)
- Clustering (more info later)
- …
Memory Tainting Overview

- Powerful technique for tracing data flows of a program
 - E.g., how network data is processed by a program

- How does tainting work?
 - performed on hardware level, using a system emulator
 - bytes in (emulated) physical memory are labeled, using a shadow memory
 - taint sources: each data element of interest is labeled (tainted)
 - taint propagation

 When memory values are copied => copy taint labels
Consider the following code fragment:

```c
ticks = GetTickCount()
filename = "c:\\" + ticks + ".exe"
file = CreateFile(filename, ...)
```

Enhanced with tainting information:

```c
ticks = GetTickCount()

ticks → <GetTickCount>  

filename = "c:\\" + ticks + ".exe"

filename → <GetTickCount>

file = CreateFile(filename, ...)
```

=> CreateFile is called with a random filename
Clustering: Motivation

- Thousands of new malware samples appear each day
- Automatic analysis systems allow us to create thousands of analysis reports
- Now a way to group the reports is needed. We would like to cluster them into sets of malware reports that exhibit similar behavior.
 - we require automated clustering techniques
- Clustering allows us to:
 - discard reports of samples that have been seen before
 - guide an analyst in the selection of those samples that require most attention
 - derive generalized signatures, implement removal procedures that work for a whole class of samples
Scalable, Behavior-Based Malware Clustering

- **Malware Clustering**: Find a partitioning of a given set of malware samples into subsets so that subsets share some common traits (i.e., find “virus families”)

- **Behavior-Based**: A malware sample is represented by its actions performed at run-time

- **Scalable**: It has to work for large sets of malware samples
Clustering

- Clustering is online since February 2009

- Last Clustering Run (June 7th 2009):
 - http://anubis.iseclab.org/?action=browse_clusters&task=259
 - Runtime: 5h38m
 - Number of clustered samples: 683,791
 - Number of clusters: 74,526
 - Among the biggest clusters there are several Allaple clusters
Chapter 5
ANUBIS Reference Projects
Leurré.com v2.0, SGNET

- Based on Fabien Pouget’s Honeynet Project (v1.0)
- SGNET - a distributed infrastructure to handle zero-day exploits
- Academic People involved
 - Corrado Leita, Marc Dacier (Director of Research @Symantec)
- SGNET =
 - Scriptgen (Eurecom) + Argos (VU Amsterdam) + Nepenthes (TU Mannheim) + ANUBIS (TU Vienna) + Virustotal (Hispasec)
 - Continue honeypot conversation with the attacker up to the point, where malware is downloaded (resp. uploaded)
 - Sensors feed potential malware automatically into ANUBIS and Virustotal for further analysis. Results are archived in DB
WOMBAT

- EU project
- Worldwide Observatory of Malicious Behaviours and Attack Threats
 - Started 01/08
 - http://www.wombat-project.eu/wombat-project-description.html
- Objectives of WOMBAT
 - new means to understand existing and emerging Internet threats
 - Implements automated analysis using ANUBIS
- Major Partners
 - VU Amsterdam, Eurecom, FORTH, PoliMilano, TU Vienna
Role of ANUBIS in WOMBAT

Source: http://www.wombat-project.eu/wombat-project-description.html
Chapter 6

ANUBIS Analysis Issues
Anubis Analysis Issues

- **Evasion**
 - attacks against Qemu
 - specific attacks against Anubis sandbox
 - blacklisting of our IP addresses and DNS names

- **Timeout**
 - 4 minutes (real-time) per analysis

- **Single execution path only**
 - may miss trigger behavior
 - some malware disables itself after some deadline
Timeout - Problem

- **General to all sandboxed solutions**
 - Timeouts, how long shall the analysis run?
 - Automatic analysis has to quit at some point (when?)

- **Most recent timeout problems**
 - Analysis of Mebroot malware resulted in empty ANUBIS logs
 - Mebroot waits about 20 min. before infecting the system
 - Watch out for empty logs!
 - Timeout can not be altered in public online version (but in the in-house version this value is customizable)

- **Malware waiting for some user interaction**
 - Mouse movement/clicks, keystrokes, certain URL to be loaded
Known Ways to detect ANUBIS

- **Malware Scene's Response (defeating ANUBIS)**
 - Check whether current Windows username equals “andy” or “user”
 - Check Windows Product ID
 - Check whether the file C:\exec.exe exists
 - Check whether the executable name equals C:\sample.exe
 - Check whether the computer name
ANUBIS-aware Malware

- ANUBIS aware Malware
 - https://anubis.iseclab.org/index.php?action=result&task_id=68f521af923abac4319a3ce6d3a85678

- Detection of ANUBIS terminates Malware Process
 - https://anubis.iseclab.org/index.php?action=result&task_id=07940d5985bd78b4cde092d0aadb2f44
Packer with Anti-Anubis Features
Chapter 7

Conclusions and Current Developments
Current Developments

- Anti Anubis-Detection

- Improved Network Analysis
 - Recognition of Exploits in Network Traffic, Bugfixes,…

- Better Statistics

- Adaptive Analysis End

- Incremental Clustering
Conclusion

- **Anubis Project**
 - Partners and Goals

- **Automatic, Dynamic Analysis with ANUBIS**
 - Analysis is a fully automated task with extreme time saving
 - helps quickly identifying potential threats

- **Advanced ANUBIS Features**
 - Tracking information flows via tainting
 - Clustering

- **Anubis Analysis Issues**
 - Detection of Anubis/Qemu
 - Single execution path
Questions?

Thank you for your attention!
I'd be happy to answer all of your questions!