
©
	2
01

5	
Tr
us
tIn

So
ft

Fabrice Derepas

Co-founder & CEO

Using
Formal Methods on
Real-World Software

OSSIR,	November	10th,	2015.	

©
	2
01

5	
Tr
us
tIn

So
ft

About TrustInSoft

• French startup created in 2013 as a Spin-off of CEA

Selected by the IRSN (Nuclear Autority) to check the
safety of programs embedded in nuclear reactors

Only company selected in the Ockham Criteria from
the SATE V exhibit

Chosen by the Linux Foundation to develop
tools for security of Core Internet Infrastructure

Nominated as one the 10 most innovative companies
in cybersecurity – RSA ’15 Conference

©
 2

0
15

T
ru

st
In

S
o

ft

©
	2
01

5	
Tr
us
tIn

So
ft

TrustInSoft Unique Value Proposal

Sell guarantees on
software used in

sensitive systems

©
	2
01

5	
Tr
us
tIn

So
ft

Pain Points
In Cyber Security

©
	2
01

5	
Tr
us
tIn

So
ft

It’s the right moment now!

1990 2000 2010 2020

Virus Worms Botnet

Advanced
Persistent

Threats

Threats
Mafia,	

Nation-states
with	huge
resources

Anti-Virus Intrusion
Detection
Systems

Solutions

Data leakage
Prevention

Harden
the software

©
 2

0
15

T
ru

st
In

S
o

ft

©
	2
01

5	
Tr
us
tIn

So
ft

Best Effort
but no guarantees

Standard market practice

©
	2
01

5	
Tr
us
tIn

So
ft

©
	2
01

5	
Tr
us
tIn

So
ft

©
	2
01

5	
Tr
us
tIn

So
ft Sp

ec
ifi

ca
tio

n

©
	2
01

5	
Tr
us
tIn

So
ft

Im
pl

em
en

ta
tio

n

©
	2
01

5	
Tr
us
tIn

So
ft Sp

ec
ifi

ca
tio

n

Im
pl

em
en

ta
tio

n

must check the
two are in sync

©
	2
01

5	
Tr
us
tIn

So
ft

Conception Verification

$$

©
	2
01

5	
Tr
us
tIn

So
ft

Conception Verification

$ $

Formal
Methods

©
	2
01

5	
Tr
us
tIn

So
ft

What exactly
are formal methods?

©
	2
01

5	
Tr
us
tIn

So
ft

(a+b)2=a2+b2+2ab

is this true?

©
	2
01

5	
Tr
us
tIn

So
ft

(a+b)2=a2+b2+2ab
Idea 1: let’s test
for many values
of « a » and « b »

©
	2
01

5	
Tr
us
tIn

So
ft

(a+b)2=a2+b2+2ab
Idea 2: let’s
perform an

algebraic proof

©
	2
01

5	
Tr
us
tIn

So
ft

(a+b)2=(a+b)x(a+b)
= a2+ab + b2+ba
=a2+b2+2ab

©
	2
01

5	
Tr
us
tIn

So
ft

int max (int x, int y) {
if (x>y) return x; else return y;

}

software

©
	2
01

5	
Tr
us
tIn

So
ft

/*@ ensures \result >= x &&
\result >= y;

ensures \result == x ||
\result == y;

*/

int max (int x, int y) {
if (x>y) return x; else return y;

}

logic

software

©
	2
01

5	
Tr
us
tIn

So
ft

An example of application on real-world
code

Using	TrustInSoft	Analyzer	we	have	generated	a	
report	which	tells	how	to	compile,	configure and	
deploy mbed TLS	in	a	given	perimeter	in	order	to	be	
immune	from	all	attacks	caused	by	CWE	119	to	127,	
369,	415,	416,	457,	476,	562,	690.

First	ever	SSL	stack	guaranteed
without	buffer	overflows.

This	stack	has	a	
configuration	
proven	to	be	
without	an	
Heartbleed-like	
flaw.

You	can	download	such	a	report	here:	http://trust-in-soft.com/polarssl-verification-kit

In	this	case	the	specification	is	“the	
stack	will	never	crash”.

©
	2
01

5	
Tr
us
tIn

So
ft

http://trust-in-soft.com/polarssl-verification-kit

©
	2
01

5	
Tr
us
tIn

So
ft

CWE list

©
	2
01

5	
Tr
us
tIn

So
ft

Target architecture

©
	2
01

5	
Tr
us
tIn

So
ft

Trusted Computing Base

©
	2
01

5	
Tr
us
tIn

So
ft

Example of an applied patch
padlen is	read	from	the	
network	and	can	contain	

arbitrary	values.
It’s	value	need	to	be	coherent	
with	ssl->in_msglen.

©
	2
01

5	
Tr
us
tIn

So
ft

Server usage pattern

©
	2
01

5	
Tr
us
tIn

So
ft

C-implementation
Frama_C_interval (0,1)

represents an abstract value which can
be 0 or 1.

©
	2
01

5	
Tr
us
tIn

So
ft

Verification architecture

©
	2
01

5	
Tr
us
tIn

So
ft

Virtual machine example

Customer	
source	code

#define ARRAY_SIZE 11

unsigned char mem[ARRAY_SIZE]= \
{80,7,5,5,3,5,3,5,4,11,2};

#define NEXT \
if (pos<ARRAY_SIZE-1) ++pos;

break;

int main () {
unsigned int A=0,B=0,pos=0;
pos=0;

while (1) {
switch (mem[pos] & 7) {
// add
case 0: A+=mem[pos]>>3; NEXT;
// substract
case 1: A-=mem[pos]>>3; NEXT;

// load

case 2: A=mem[B]; NEXT;
//store
case 3: mem[B]=A; NEXT;
// exit
case 4: return A;
// load and add
case 5: if (B<ARRAY_SIZE)

A=A+mem[B]; NEXT;
// goto A
case 6: if (A<ARRAY_SIZE)

pos=A; break;
// swap A and B
case 7: {int tmp=B;B=A;A=tmp;}

NEXT;
} } }

This	is the	code	of	a	virtualmachine	which computes
2^4

value	of	B	
not	checked

©
	2
01

5	
Tr
us
tIn

So
ft

All virtual machines with memory size of 11
#define ARRAY_SIZE 11
unsigned char mem[ARRAY_SIZE] = {80,7,5,5,3,5,3,5,4,11,2};
#define NEXT if (pos<ARRAY_SIZE-1) ++pos;\
break;

int main () {
unsigned int A=0,B=0,pos=0;

while (1) {
// . . .

#define ARRAY_SIZE 11
unsigned char mem[ARRAY_SIZE];
#define NEXT \
if (pos<ARRAY_SIZE-1) ++pos; break;

int main () {
unsigned int A=0,B=0,pos=0;

for (pos=0;pos<ARRAY_SIZE;++pos) mem[pos]=Frama_C_interval(0, 255);
pos=0;
while (1) {
// . . .

TrustInSoft	Analyzer
tests	all	possible	virtual	machine	

of	size	11.	
25611 tests.

In	a	single	run.

Here	is	the	program
for	a	given	state	of	the	virtual	

machine
This	program	has	no	error

Symbolic	value:	all	integers	
between	0	and	255

©
	2
01

5	
Tr
us
tIn

So
ft

Sectors using these techniques

TrustInSoft works with the most demanding developers

of sensitive software.

Since 2013 Since 2014 Since 2015

Rail

Space

Telecom

Aeronautics

Nuclear Reactors

Defense

Automotive

Smart Factories

IT

Customer names are under strict NDAs

DO-178C – ED-12C

IEC-60880 IEC-62138

EN-50128 ISO 2626-2

CWE

32©
 2

0
15

T
ru

st
In

S
o

ft

3333

©
	2
01
4	
Tr
us
tIn

So
ft

logic

software
Airbus Areva

IRSN Dassault

EDF

Renault

Coq

CEA INRIA

Ocaml

AltErgoWhy

Frama-C

©
	2
01

5	
Tr
us
tIn

So
ft

Why You
Should Care

©
	2
01

5	
Tr
us
tIn

So
ft

Two possible approaches

•Detect threats
•Reduce attack surface

©
	2
01

5	
Tr
us
tIn

So
ft

there is no anti-virus
in the airplane

©
	2
01

5	
Tr
us
tIn

So
ft

// declare a table of size 100
int table[100];
// assign cell 101 with value
// from network
table[101]=43;

©
	2
01

5	
Tr
us
tIn

So
ft

Sp
ec

ifi
ca

tio
n

©
	2
01

5	
Tr
us
tIn

So
ft Sp

ec
ifi

ca
tio

n

Im
pl

em
en

ta
tio

n

the two
are not in

sync!!!

// declare a table of size 100
int table[100];
// assign cell 101 with value
// from network
table[101]=43;

©
	2
01

5	
Tr
us
tIn

So
ft

Static Analysis Tool Exposition
and the
Ockham Soundness Criteria

©
	2
01

5	
Tr
us
tIn

So
ft

What about
Open source?

©
	2
01

5	
Tr
us
tIn

So
ft

what
about
open

source?

Open	Automotive	Alliance

©
	2
01

5	
Tr
us
tIn

So
ft

01101001101100010
11010010100100010
01001001000100101
01010100101010010
10101000100100100
01010101010101010
10101101010101011

idea
of the

program

source
code

binary
code

Photo	credit:	Lightspring/Shutterstock

©
	2
01

5	
Tr
us
tIn

So
ft

free
as in freedom

free
as in free beer

©
	2
01

5	
Tr
us
tIn

So
ft

GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY16	HMI	Module	 (SW	15.1A025*)
Color	Connected	Navigation	Head	Unit	5.8’’	for	Chevrolet	City	Express
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY15	HMI	Module	 (SW	14.0F105*)
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY15	HMI	Module	 (SW	14.1F013*)
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N185*)	
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N155*)	
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N146.3*)
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N106*	to	12.6N109*)
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N096*,	12.6N098*)
GM	Cadillac,	Chevrolet,	GMC,	Buick	and	Opel	MY14	HMI	Module	 (SW	12.6N057.2*	and	12.7N015*	to	12.7N025*)
GM	Cadillac,	Chevrolet,	GMC	MY13	HMI	Module	 with	MY14	SW	(SW	12.5Exxx*	later	than	12.5E040*)
GM	Cadillac	MY13	HMI	Module	 (SW	12.2Sxxx*):	XTS,	ATS	(Region	North	America)	
GM	Cadillac	MY13	HMI	Module	 (SW	12.3Sxxx*)
GM	Cadillac	MY13	HMI	Module	 (SW	12.4Exxx*	and	12.5Exxx*	up	to	12.5E022*):	XTS,	ATS,	SRX	(Region	China)

Download the	source	from:	http://oss.bosch-cm.com/gm.html

Example of Bosch Free and Open Source
Software for GM

©
	2
01

5	
Tr
us
tIn

So
ft

common	open	source	base	
contributed	by	many	

different	persons	around	
the	world

Proprietary
module	of
Company

#4

Proprietary
module	of
Company

#5

Proprietary
module	of
Company

#6

Why open source?

• There are many reasons for
using open source software

• One of them is to reducing the
costs of widely used on and
contributed software
components by sharing the
development costs.

proprietary
module	of
Company

#1

proprietary
module	of
Company

#2

proprietary
module	of
Company

#3

©
	2
01

5	
Tr
us
tIn

So
ft

Process based
vs.

Product based

©
	2
01

5	
Tr
us
tIn

So
ft

©
	2
01

5	
Tr
us
tIn

So
ft

©
	2
01

5	
Tr
us
tIn

So
ft

Trusting the crowd is nice

Formal Guarantees are
definitive

©
	2
01

5	
Tr
us
tIn

So
ft

contact@trust-in-soft.com

Suite 231

2415 Third Street,

San Francisco

USA

222 av. du Maine

75014 Paris

France

©
	2
01

5	
Tr
us
tIn

So
ft

Example of eradicated
weaknesses

Standard vulnerabilities:

• Buffer overflow, invalid pointer usage, Division
by zero, non initialized memory read, dangling
pointer, arithmetic overflow, NaN in a float
computation, overflow in float to integer
conversion,

CWE-732: Incorrect Permission Assignment for
Critical Resource

CWE-327: Use of a Broken or Risky
Cryptographic Algorithm

CWE-307: Improper Restriction of Excessive
Authentication Attempts

CWE-134: Uncontrolled Format String

CWE-759: Use of a One-Way Hash without a
Salt CWE-770: Allocation of Resources Without
Limits or Throttling

CWE-754: Improper Check for Unusual or
Exceptional Conditions

CWE-838: Inappropriate Encoding for Output
Context

CWE-362: Concurrent Execution using Shared
Resource with Improper Synchronization ('Race
Condition')

CWE-841: Improper Enforcement of Behavioral
Workflow

CWE-772: Missing Release of Resource after
Effective Lifetime

CWE-209: Information Exposure Through an
Error Message

…

Other vulnerabilities:

• CWE-078: Improper Neutralization of Special
Elements used in an OS Command ('OS
Command Injection')

• CWE-306: Missing Authentication for Critical
Function

• CWE-798: Use of Hard-coded Credentials
CWE-311: Missing Encryption of Sensitive
Data CWE-807: Reliance on Untrusted Inputs
in a Security Decision

• CWE-250: Execution with Unnecessary
Privileges CWE-022: Improper Limitation of a
Pathname to a Restricted Directory ('Path
Traversal')

• CWE-863: Incorrect Authorization

• CWE-676: Use of Potentially Dangerous
Function

