
Bypassing LSA Protection (a.k.a. RunAsPPL) in
Userland

Abusing the DefineDosDevice API actually has a second use, it's an Administrator
to Protected Process Light (PPL) bypass. - James Forshaw (2018)

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 1

Who am I?
Clément Labro

Pentester @ SCRT
Passionate about Windows Security
MSRC's 2020 Most Valuable Security Researcher
Maintainer of PrivescCheck

Blog: https://itm4n.github.io

Twitter: @itm4n
Github: @itm4n

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 2

https://github.com/itm4n/PrivescCheck
https://itm4n.github.io/
https://twitter.com/itm4n
https://github.com/itm4n

We all know LSA Protection, or do we?
What I knew back then.

Configure a simple registry key and reboot, that's it!

From now on, other processes (Mimikatz, procdump, …) can't access LSASS
...unless you go from Ring 3 to Ring 0, a.k.a. the Kernel, using a custom driver.

How/why does it work?

Binaries that are not signed can’t open LSASS?
... Well, let's do some research...

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 3

How to enable LSA Protection
Configure the RunAsPPL value in the registry and reboot

HKLM\SYSTEM\CurrentControlSet\Control\Lsa -> RunAsPPL = 0x00000001

Remarks / Limitations

 Only available starting from Windows 8.1 / Server 2012 R2
 If Secure Boot is enabled, the setting is persistent (stored in the UEFI firmware)!
 Prevents non-signed plug-ins and drivers (smart card readers, password filters,

etc.) from being loaded in LSASS.

Source: https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-
and-management/configuring-additional-lsa-protection

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 4

https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/configuring-additional-lsa-protection

How good is this LSA Protection?

LSA Protection against Mimikatz - Round 1

 The current user is an administrator
 The current user has SeDebugPrivilege
 0x00000005 = "Access is denied"

OpenProcess failed, the Kernel refused to return a process handle to the caller.

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 5

How good is this LSA Protection?

LSA Protection against Mimikatz - Round 2

 Mimikatz is shipped with a signed driver: mimidrv.sys (load it with !+)
 Use the command !processprotect /process:lsass.exe /remove
 This drops the protection flag of the Process object in the Kernel memory
 Easily flagged by AV/EDR

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 6

Protected Processes (Light)
Protected Processes (PP)

Introduced with Windows Vista / Server 2008

Objective: protect media content and comply with Digital Rights Management!
The image file had to be signed with a special Windows Media Certificate

Protected Processes Light (PPL)

Introduced with Windows 8.1 / Server 2012 R2
A protection level is added (signer type)

=> Some processes are more protected than others

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 7

Protection levels & Signer types

Source: https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-
protected.html

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 8

https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html

A few examples
Windows Defender - MsMpEng.exe

LSASS when RunAsPPL is enabled - lsass.exe

A critical process - winint.exe

SgrmBroker - SgrmBroker.exe

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 9

How is the protection level determined?
The image file's certificate contains a special "EKU" field.

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 10

Protected Processes in a nutshell
 Protection level: Protected Process (PP) or Protected Process Light (PPL)
 Signer type: WinTCB > Windows > Lsa > AntiMalware > Authenticode
 LSA Protection: if RunAsPPL=1 => LSASS runs as a PPL with the signer type Lsa

Here are the basic rules:

 A "standard" process cannot open a PP(L)
 A PP(L) can open a another PP(L) only if its protection level is greater or equal
 A PP(L) can be created by any user as long as the image file is signed by MS and its

certificate contains the appropriate EKU values.

 If I'm able to run arbitrary code inside a PPL with WinTCB level, I can open any PPL.

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 11

How do PPs and PPLs handle DLL loading?
The EXE must be digitally signed by Microsoft "impossible" to run arbitrary code.

... but what about imported DLLs? They must be signed as well but...

DLL search order reminder:

 DLLs already loaded in memory
 Known DLLs
 Application's directory
 System directories (C:\Windows\System32\ , C:\Windows\System\ , ...)
 Current directory
 %PATH% directories

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 12

Known DLLs
Known DLLs are Section objects that are stored in the Object directory \KnownDlls

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 13

Known DLLs: PP vs PPL
Protected Process (PP)

 Known Dlls are loaded from the disk. The digital signature is always verified.

Protected Process Light (PPL)

 Known DLLs are loaded from the existing Sections. No signature validation!
2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 14

Create your own Known DLL entry!
As an administrator, create a new Section object in \KnownDlls and map your own
image file DLL hijacking for the win!

Hmm... It's not that simple! The \KnownDlls directory and the KnownDlls registry
key are protected with a "Process Trust Label".

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 15

Introducing the DefineDosDevice API
Abusing the DefineDosDevice API actually has a second use, it's an Administrator
to Protected Process Light (PPL) bypass. - James Forshaw (2018)

Source: https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-
exploiting.html

BOOL DefineDosDeviceW(DWORD dwFlags, LPCWSTR lpDeviceName, LPCWSTR lpTargetPath);

 Examples: plug a USB key, map a network share, etc.

DefineDosDeviceW(dwFlags, L"E:", "\\Device\\HarddiskVolume5");

 DefineDosDevice is a wrapper for an RPC function exposed by the CSRSS service.
 The CSRSS service is executed as a PPL with the signer type WinTCB!

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 16

https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html

A TOCTOU vulnerability in DefineDosDevice
DWORD dwFlags = DDD_NO_BROADCAST_SYSTEM | DDD_RAW_TARGET_PATH;
DefineDosDeviceW(dwFlags, L"DEVICE_NAME", L"TARGET_PATH");

 Impersonate the client, try to open \??\DEVICE_NAME and revert to self.
 If it exists, determine whether it's global (i.e. object path start with \GLOBAL??\ ?).
 If so, disable impersonation. (i.e. exec as SYSTEM + PPL/WinTCB)
 If the symbolic link (step 1) exists, delete it.
 (If impersonation is enabled, impersonate the client again.)
 Create the symbolic link \??\DEVICE_NAME -> TARGET_PATH .
 (If impersonation is enabled, revert to self.)
 Mark the new symbolic link object as "Permanent".

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 17

A TOCTOU vulnerability in DefineDosDevice
Two operations:

Step 1/2: a check is done in the context of the RPC client.

Step 6: the symbolic link could be created in the context of the service.

The same path in both cases but \??\DEVICE_NAME = ...

\GLOBAL??\DEVICE_NAME for SYSTEM
\Sessions\0\DosDevices\00000000-XXXXXXXX\DEVICE_NAME for any other user

We need to find a value for DEVICE_NAME such that \??\DEVICE_NAME resolves to: ...

A global object (\GLOBAL??\...) when the caller is impersonated.
\KnownDlls\foo.dll when interpreted as SYSTEM

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 18

The exploit
We can exploit this TOCTOU using a path such as GLOBALROOT\KnownDlls\foo.dll .

 The service will open \??\GLOBALROOT\KnownDlls\foo.dll as the RPC client.

\??\GLOBALROOT\KnownDlls\foo.dll = \Sessions\0\DosDevices\00000000-XXXXXXXX\GLOBALROOT\KnownDlls\foo.dll
-> \GLOBAL??\KnownDlls\FOO.dll

 This object does not exist but we can create it, and its path starts with \GLOBAL??\ .
 The object is considered as "global" so impersonation is disabled.
 Create the symlink as SYSTEM \??\GLOBALROOT\KnownDlls\foo.dll .

\??\GLOBALROOT\KnownDlls\foo.dll = \GLOBAL??\GLOBALROOT\KnownDlls\FOO.dll
-> \KnownDlls\FOO.dll

 Enjoy your new symbolic link \KnownDlls\foo.dll !
2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 19

Running arbitrary code inside a PPL
Objective - Hijack a DLL of an EXE we can execute as a PPL with the level WinTCB .

Only 4 built-in executables match this criteria.

The best candidate is by far services.exe (SCM).
It loads several DLLs which are not Known DLLs (depends on the OS version).

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 20

PPLdump
https://github.com/itm4n/PPLdump

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 21

https://github.com/itm4n/PPLdump

References
https://itm4n.github.io/lsass-runasppl/

https://blog.scrt.ch/2021/04/22/bypassing-lsa-protection-in-userland/
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-
exploiting.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-
protected.html
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-
protected.html

https://docs.microsoft.com/en-us/sysinternals/resources/windows-internals

2021-10-12 - Bypassing LSA Protection (a.k.a. RunAsPPL) in Userland - Clément Labro 22

https://itm4n.github.io/lsass-runasppl/
https://blog.scrt.ch/2021/04/22/bypassing-lsa-protection-in-userland/
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
https://docs.microsoft.com/en-us/sysinternals/resources/windows-internals

