

Cécile Delerablée (CEO)

Leanear Trusting the Cloud

Our DNA

Leveraging expertises in Cryptography and Operational Security to tackle hard tech challenges and durably address customer concrete problems.

The Team

Cécile Delerablée, PhD CEO (ENS, Orange, CryptoExperts)

_énaïck Gouriou PhD Student (ENS)

07/2022

Yohann Thomas, PhD CTO (Orange, ANSSI)

Pierre Hardy Lead Software (Sopra, ANSSI)

Bérenger Rosat Lead DevOps (Cassidian, ANSSI)

Cloud (R) Evolution...

More and more data

Less and less control

More and more value

... Cyberattacks Explosion

2021 Highlights

Number of victims whose data was posted on leak sites: +85% to 2,566 organizations

Cyber extortion ecosystem: emergence of 35 new ransomware gangs

Frequency of ransomware attacks: 11 seconds (40 seconds in 2016)

Average ransom demand: +144% to \$2.2 million

Source: Palo Alto Networks - Unit 42, 2022 Ransomware Threat Report

Perimeter Security

Data security is needed more than ever

Zero Trust

Data Centric Security

Privacy by Design

Privacy by Default

Solution: End-to-End Encryption (E2EE)

E2EE allows communications where only communicating users can read the content. It aims to prevent potential eavesdroppers¹ from being able to access the content (i.e the cryptographic keys needed to decrypt the content).

A technical means to address issues related to regulatory compliance, data leaks, data sovereignty, and more generally to data protection.

Related concepts / principles: Data-Centric Security, Privacy by Design, Zero-Trust, Web3.

⁽¹⁾ including telecom providers, Internet providers, malicious state bodies, and even the provider of the communication service

En-to-end security

« Not Data Centric » Solutions

- VPNs
- Peer2Peer communications

E2EE: easily applicable to chat¹, but... Hard to generalize

⁽¹⁾ E2EE has become the norm for instant messaging applications (Signal, Whatsapp, etc.)

07/2022

Our mission: bringing E2EE¹ generalization

⁽¹⁾ E2EE: End-to-end Encryption

07/2022

Back to the 70's

Symmetric Encryption

Asymmetric Encryption

Hybrid Encryption

KEM: Key Encapsulation Mechanism

DEM: Data Encapsulation Mechanism

07/2022

In the 2000's

Traditional Primitives

Traditional Primitives

Security

ex: Post-Quantum resistance

Efficiency

Keys size Output size Computing efficiency

Protocols

Security

DH, TLS

Diffie–Hellman key exchange

From Wikipedia, the free encyclopedia

Diffie-Hellman key exchange^[nb 1] is a method of securely exchanging cryptographic keys over a public channel and was one of the first public-key protocols as conceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman.^{[1][2]} DH is one of the earliest practical examples of public key exchange implemented within the field of cryptography.

Transport Layer Security

From Wikipedia, the free encyclopedia

Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.

2004: OTR

Off-the-Record Communication, or, Why Not To Use PGP

Nikita Borisov UC Berkeley nikitab@cs.berkeley.edu

Ian Goldberg Zero-Knowledge Systems ian@cypherpunks.ca

Eric Brewer UC Berkeley brewer@cs.berkeley.edu

2005: SAS

Ensuring the link between a cryptographic identity and a human being

Secure Communications over Insecure Channels Based on Short Authenticated Strings

Serge Vaudenay

EPFL

Advanced Primitives

Security

23

Computing

Security

07/2022

Copyright © 2022 Leanear SAS

24

Computing

- Searchable Encryption (SE)
- Secure Multiparty Computation (MPC)
- Fully Homomorphic Encryption (FHE)

Access Control

Traditional primitives

Security

Copyright © 2022 Leanear SAS

26

Traditional Paradigm lencryption key <=> l (unique) decryption key

Various Access Policies

- lover n (inclusive / exclusive)
- Matching identity, hierarchical position, attributes, threshold...

Broadcast Encryption 1 encryption key <=> Multiple decryption keys

Some Technical Elements

Copyright © 2022 Leanear SAS

30

El Gamal Encryption (KEM)

- Public key: $g, y = g^x$
- Secret key: *x*
- Encryption:
 - $\cdot C = y^r$
 - $\cdot K = g^r$
- Decryption: $K = C^{\frac{1}{x}} = g^{x \cdot r \cdot \frac{1}{x}} = g^r$

Underlying problem examples

Inverse problem

- Given: g, g^{γ}
- Find: $g^{\frac{1}{\gamma}}$

Underlying problems examples

Hard problem with multiple solutions

- Given: $g, Y = g^{\gamma}$
- Find: (x, A) such that $A = g^{\frac{1}{\gamma + x}}$

Verifiable Property

- Bilinear map: e such that $e(g^x, g^y) = e(g, g)^{x \cdot y}$
- (x, A) verifies: $e(A, Y) \cdot e(g^x, g) = e(g^{\frac{1}{\gamma+x}}, g^{\gamma}) \cdot e(A^x, g) = e(g, g)^{\frac{\gamma}{\gamma+x} + \frac{x}{\gamma+x}}$

= e(g,g)

Lots of other problems Lots of Primitives

Some of Our Results

- Cécile Delerablée, Pascal Paillier, David Pointcheval: Fully Collusion Secure Dynamic Broadcast Encryption with Constant-Size Ciphertexts or Decryption Keys (2007)
- Cécile Delerablée: Identity-Based Broadcast Encryption (2007)
- Cécile Delerablée, David Pointcheval: Dynamic Threshold Public-Key Encryption (2008)
- Cécile Delerablée, Lénaïck Gouriou, David Pointcheval: Key-Policy ABE with Delegation of Rights (2022)

Learn more?

Cécile Delerablée, CEO

<u>cd@leanear.io</u>

36

Cécile Delerablée (CEO)

Leanear Trusting the Cloud

