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How much do new graduates earn
after completing their degree?
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Differential privacy

e Transparent

<Quantiﬁable guarante>
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Differential privacy

e Transparent e You can'tignore the noise
e Quantifiable guarantee: € Qu have to cho@
e Composition: &, +&, =€, . e Implementation can be tricky
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Maximum updated certainty

Maximum certainty of an attacker starting with a prior of 50%
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At the € we chose, the expected error will
be =3 for counts, and $1500 to $15000
for quantiles.

That's fine for counts, but the error is
too great for quantiles. Can you

increase €?

Not beyond a certain limit.

But we could devote more of the privacy
budget to quantiles: error would become
=6 for counts, but $1000 to $10000 for
quantiles.

That’s better. But we care more about
medians than 25th and 75th
percentiles, could we optimize
accordingly?
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At the € we chose, the expected error
will be ~3 for counts, and $1500 to
$15000 for quantiles.

That’s fine for counts, but the
error is too great for quantiles.
Can you increase €?

OK, if we spend more of the budget
towards quantiles, focus on
medians, and drop some
breakdowns, error comes down to
between $500 and $5000.

That works for us!



Q College Scorecard
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Duke University

Durham, NC
6,650 undergraduate students
duke.eduu
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Private
Nonprofit

United Methodist

Midpoint for 4-yr Schools
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Graduation Rate o

96%

Midpoint for 4-yr Schools: 57%

Midpoint
for 4-yr
Schools

© ADD TO COMPARE SCHOOL  SHARE THIS SCHOOL

Braggtown

Midpoint for All Schools

Average Annual Cost o

$32,459

Midpoint for 4-yr Schools: $19,534
S0

Midpoint for 4-yr
Schools

Median Earnings ©
$93,115

Midpoint for 4-yr Schools: $47.891
S0

Midpoint for 4.yr
Schools
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Start Your FAFSA®
Application

To receive financial aid, you must
complete the Free Application for
Federal Student Aid (FAFSA®)
form. You can use Federal Student
Aid Estimator £ to see how much
aid may be available to you.

START YOUR FAFSA®
APPLICATION &

Don't forget: Do fill out the FAFSA®
form, but also look into other
programs such as Gl Bill Benefits
 that may also help you pay for
school.

Compare:




Collecting
requirements

Improve the strategy
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Building a
prototype
algorithm

Measuring and
communicating
the error

Deploying =’




Complexity Robustness Scale



The Tumult Platform sy

e Easy-to-use API for data scientists

United States®

RS | Census

(D)
e Familiar interface, similar to Pandas/Spark WIKIMEDIA
e Hides away the complexity of DP

e Includes optimizations for greater accuracy

[ J

Many aggregations & transformations .
elgsregEr | Tumult Analytics

Extensible framework for power users

e Framework based on peer-reviewed research
e Built for scale, on top of Apache Spark
[ J
[ J

User composes DP “building blocks” ...
... and obtains an end-to-end privacy proof
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session = Session.from_dataframe(
dataframe=private_data,
source _id="my data",
privacy budget=PureDPBudget(1.7),

)
query = (
QueryBuilder("my data")
.filter("age > 42")
.groupby(zip_ codes)
.median("income", low=0, high=10**6)
)

result = session.evaluate(query, PureDPBudget(0.8))



Differential privacy & regulation

Privacy regulations have a carve-out for fully anonymized data

e The scientific community recognizes DP as a gold standard

The Role of Differential Privacy in GDPR Compliance

Research suggests alignment between legal concepts & DP

Position Paper

Rachel Cummings
Georgia Institute of Technology
School of Industrial and Systems Engineering
rachelc@gatech.edu

Deven Desai
Georgia Institute of Technology
Scheller College of Business
deven.desai@scheller.gatech.edu

ABSTRACT

The EU General Data Protection Regulation (GDPR) empowers in-
dividuals with the right to control erasure of their personal data
held by firms. GDPR also allows firms to retain anonymized aggre-
gate data and statistical results. Unfortunately, most recommender
systems (and many other types of machine learning models) mem- subject is not or no longer identifiable” Recital 26 concludes

specific person” [9]. This view connects to the language of
26 which states, “The principles of data protection should t}
not apply to anonymous information, namely informatioy
does not relate to an identified or identifiable natural pers|
personal data rendered anonymous in such a manner that

Towards formalizing the GDPR's notion of singling out
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There is a significant conceptual gap between legal and math-
ematical thinking around data privacy. The effect is uncertainty
as to which technical offerings meet legal standards. This uncer-
tainty is exacerbated by a litany of successful privacy attacks

oize individual data entries as they are trained, and thus are not GDPR “does not therefore concern the pr ing of such
3 n mone infarmation incliding for ctatictical or recaarch il

ating that ditional ical disclosure
techniques often fall short of the privacy envisioned by reg-

mented in the academy, industry, and government, there
is a lack of discourse between the legal and mathematical
conceptions. The effect is uncertainty as to which techni-
cal offerings adequately match expectations expressed in legal
standards (3).




Privacy-enhancing technologies

Collecting data privately: Computing data privately: Sharina data orivately:
secure aggregation, secure enclaves, diffegen tialp Fivac v
local differential privacy homomorphic encryption P Y
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Joining data privately:
multi-party computation



