Adversarial Attacks

in the Real World

Mathis Hammel

Independent consultant

- Technical competitions
- Algorithms
- Cybersecurity R&D

Let's start with the basics.

What *really* is a neural network?

What really happens inside?

What is training?

Initially, the neural net does not know what to do

- It can approximate any function
- Adjust parameters (weights and biases)
- Learn their correct values through training

Repeat many times, over many examples

After enough training steps, the neural network will approximate human evaluation

Parameter adjustments use the <u>gradient</u>

Neural nets must be **continuous** and **differentiable**

Parameter adjustments use the gradient

Neural nets must be **continuous** and **differentiable**

We can exploit these properties!

Neural networks are not "smooth"

~ Ankur Mohan

Neural networks are not "smooth"

~ Ankur Mohan

What do these irregularities mean?

A <u>small perturbation</u> on the input (in a carefully chosen direction)

can change the output by a lot

Original

Each pixel is changed by 1 bit

Original

Panda

Chair (99.9%)

Pandas are nice, but let's break something cooler.

Self-driving cars!

Disclaimer

For legal and practical reasons, the following attacks will be demonstrated on a simulated environment.

(but they also work on actual cars)

Objective:

Get this sign to be detected as "speed limit 50"

How do we find the correct perturbation?

How do we find the correct perturbation?

Use the gradient!

Partial derivative

 $\partial score$

 $\partial pixel_{x,y}$

Partial derivative

∂score

how will the **score** change

if

 $\partial pixel_{x,y}$

this **pixel** changes slightly

Partial derivative

∂score

how will the **score** change

if

 $\partial pixel_{x,y}$

this **pixel** changes slightly

We can also see it as a <u>correlation</u> coefficient

Gradient-based adversarial attacks

Change **all** pixels **slightly** in the gradient direction

OR

Change **a few** most significant pixels **all the way**

FGSM Many small changes

Speed limit 50 (99.9%)

JSMA Few large changes

Speed limit 50 (99.9%)

These attacks are not **robust**

They are very sensitive to:

- Camera noise
- Object angle
- Lighting
- Background

Infected image raw file

Speed limit 50 (99.9%)

Infected image smartphone photo

Stop (97.6%)

Infected image original perturbation

Speed limit 50 (99.9%)

Infected image

same perturbation, different pose

Stop (98.0%)

2 conditions needed

- Bit-perfect input
- White-box access to the model

How do we make a better attack?

We want a perturbation that is:

- physically applied to the sign
- as stealthy as possible
- robust on a wide range of conditions
- without access to the model gradients

Noise resistance can be achieved by using larger stickers

Black-box attack

We don't have access to gradients, but we can still get the prediction score

Try many configurations and keep the best

Black-box attack

- Not very efficient to do manually
- Need to try millions of combinations
- Not very reproducible
- → Work in a **virtual** attack setup

The same perturbation can now be simulated over many different conditions

Eliminates all external variables

- Noise
- Position/angle
- Lighting and reflections
- Background

How do we search for good perturbations?

<u>Bruteforce</u> - try all possible combinations

Guaranteed to find the optimal solution

...but takes 10²⁵ years 😱

How do we search for good perturbations?

<u>Monte-Carlo</u> - try random perturbations

Good perturbations are rare (~1 in a billion)

Need to be **very lucky**
Work <u>step by step</u>

Work <u>step by step</u>

Test many configurations for sticker **1**, keep the best

Work <u>step by step</u>

Test many configurations for sticker **2**, keep the best

Work <u>step by step</u>

Test many configurations for sticker **3**, keep the best

Work <u>step by step</u>

etc.

Small improvement: add an **optimization** step to search locally for the best attack

Inspired by mutations in genetic algorithms

After adding each sticker, try moving the other ones slightly

After adding each sticker, try moving the other ones slightly

Attack performance @ 3min per patch

Attack performance @ 3min per patch

Demo time!

We want a perturbation that is:

- physically applied to the sign
- as stealthy as possible
- robust on a wide range of conditions
- without access to the model gradients

We want a perturbation that is:

physically applied to the sign

? as stealthy as possible

V robust on a wide range of conditions

without access to the model gradients

This PoC can be improved. Ideas:

- More stealth
- Black-box++

All neural networks are vulnerable to

adversarial attacks, and

no efficient protections currently exist.

Any questions?

Mathis Hammel

@MathisHammel

mathishammel.com

Independent consultant

- Technical competitions
- Algorithms
- Cybersecurity R&D

