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Abstract

Zero-day attacks, new (anomalous) attacks exploit-
ing previously unknown system vulnerabilities, are a se-
rious threat. Defending against them is no easy task,
however. Having identified “degree of system knowl-
edge” as one difference between legitimate and illegiti-
mate users, theorists have drawn on information theory
as a basis for intrusion detection. In particular, Kol-
mogorov complexity (K) has been used successfully.

In this work, we consider information distance
(Observed K − Expected K) as a method of detect-
ing system scans. Observed K is computed directly,
Expected K is taken from compression tests shared
herein. Results are encouraging. Observed scan traffic
has an information distance at least an order of mag-
nitude greater than the threshold value we determined
for normal Internet traffic. With 320 KB packet blocks,
separation between distributions appears to exceed 4σ.

1. Introduction

We live in a rapidly changing world. One of the
forces driving change is the phenomenal increase in in-
formation available via the Internet. An additional
challenge is controlling information access. Denning
[11] discusses the problem at length, partitioning it
into three categories commonly called CIA. Summa-
rized, they are:

1. Confidentiality: Information is available only to
authorized users in an approved manner and at
approved times.

2. Integrity: Information comes only from trusted
sources, without repudiation and can be guaran-
teed not to have been altered.

3. Availability: Authorized users have access to
needed information and services in a timely man-
ner.

Confidentiality and integrity are compromised by
unauthorized access to proprietary information and
services. Availability degrades because of denial of ser-
vice attacks or destruction of data. Cost estimates to
businesses alone range from $13B to $226B in 2003 [7].
The cost to consumers is not considered in these esti-
mates.

Protecting an information system is an ongoing pro-
cess. System administrators (sysadmins), in attempts
to solve known weaknesses, upgrade their systems and
import more problems. Even the patches — soft-
ware modifications designed to block known holes —
often create new vulnerabilities or attack opportuni-
ties for intruders [5]. An on-line search using the
key words “vulnerability, patch and hole” will turn up
thousands of known problems. Sysadmins can protect
against known vulnerabilities; detecting and dealing
with known attacks is routine. Their worst nightmare
is to be attacked by some entity exploiting a previously
unknown vulnerability. Commonly called Zero Day at-
tacks, these new exploits may bear little resemblance
to known attacks and thus they are difficult to detect.

After-the-fact forensics can recreate the crime. This,
however, provides the sysadmin no opportunity to pro-
tect their information system against a Zero Day ex-
ploit in progress. The ability to detect a Zero Day event
requires being able to differentiate between normal and
new intrusive system activity in real-time. This kind
of detection is radically different from detecting known
attacks, where the attacks are well-defined and attack
signatures well-established. Differentiating normal ac-
tivity from intrusive is no easy task, however. Normal
activity on one system or for one user, will frequently
vary over time. Normal performance characteristics in
one setting or at one time, may well be anomalous in
another setting or at another time. There is also the



problem that most anomalous system performance is
not caused by a Zero Day or any other kind of exploit.

Consider two database queries. The first, a fre-
quently used query is executed by an authorized user;
this is normal activity. The same query executed by an
unauthorized user may be malicious. Or perhaps this
query, applied to a poorly designed new database or
poorly patched existing database, causes an error con-
dition or system crash. What was (and may still be in
another setting) normal traffic now becomes an exploit
in the right (or perhaps we should say wrong) hands.
Normal traffic has become malicious or indeterminate
(normal or malicious, depending upon the context). In
response to a system change, a second query is insti-
tuted. Because it’s new, it could be considered, at least
when first used, anomalous. This query is, however,
normal. The intrusion detection challenge is to alarm
on the first, but ignore the second — at best a very dif-
ficult task. The success with which intrusion detection
systems (IDS’s) achieve these separations is measured
as “False positives” — % innocuous traffic flagged as
malicious and “False negatives” — % malicious traffic
not flagged.

This paper’s contribution is to introduce a detection
algorithm for anomalous intrusions that promises to
reduce false positives and negatives substantially.

2. Organization

The rest of this paper is divided up as follows: Sec-
tion 3 — a review of previous anomalous IDS develop-
ments; Section 4 — a discussion of conventional Intru-
sion Detection System (IDS) protocols; Section 5 —
presentation of a new IDS concept; Section 6 — ap-
plying the new IDS concept; Sections 7 & 8 — issues
using data compression to develop the proposed met-
ric; Section 9 — our experimental objective; Section
10— our experimental procedure and results; Section
11 — identifying the optimum packet block size; Sec-
tion 12 — real-world issues; Section 13 — how our
results can be used; Section 14 — future work; Section
15 — conclusion. An Appendix relates our metric to
low frequency attack detection.

3. Previous Work

In spite of apparently insurmountable difficulties,
unknown (anomalous) exploit detection has received a
significant amount of attention, using an assortment of
approaches. There are numerous IDS’s available, some
commercial, others free. To list them and discuss their
various features is well beyond the scope of this paper.

The on-line list provided by the Center for Education
and Research in Information Assurance (CERIAS), lo-
cated at Purdue University [10], is probably one of the
most complete available. It lists over sixty IDS’s, many
of which offer some kind of anomalous attack detection
capability.

Detection approaches are seemingly as numerous as
the tools available. Some are static, others are dy-
namic, adjusting to changing conditions. Machine-
learning techniques are popular. Many recent anoma-
lous IDS developments are statistically based, although
the features selected cover the gamut. Data mining
[28], time-based [32] and Mahalanobis distance [30, 39]
are just a few.

This attention is well justified. Because anomalous
exploits are new, they take advantage of previously
unknown information system vulnerabilities. Systems
containing any previously unknown vulnerability are
suddenly wide open for attack. The current lack of ef-
fective real-time detection tools for unknown attacks
can leave sysadmins feeling powerless.

4. Conventional anomalous exploit de-
tection

The first challenge in detecting anomalous exploits
is defining what to measure. What metrics will be use-
ful in identifying malicious traffic? Work has focused
on two areas: system state and system activity (traffic)
[20]. The latter term is broadly defined to include ev-
erything from messages and data transfers internal to a
specific machine to incoming Internet packets received
by a network firewall. Traffic-based metrics offer the
earliest warning. Traffic is captured and analyzed be-
fore reaching its destination, when it has yet to impact
the system. This is not true with system-state based
metrics. Before a system state change can be detected,
an attack must have been at least partially successful.
This difference makes traffic-based detection obviously
preferable.

For the most part, traffic-based detection can be
summarized as packet substring analysis. Frequently,
these analyses have a time sensitive component (e.g.,
log-in time, number of log-in attempts, number of
packets received, etc.) or a location sensitive compo-
nent (such as user log-in location, communication hops,
packet source address, etc.)[20]. The problem is that,
individually, these substrings generally are innocuous.
Suspicious activity can only be detected by consider-
ing a wide array of information jointly. In so doing,
however, the uncertainty becomes so substantial that
even sophisticated analytic techniques yield unaccept-
ably high detection error rates [28]. The challenge is so



great that feature selection has become an important
research topic in its own right [8, 38].

One would hope that malicious traffic is not the
norm, but can be considered to be a separate, infre-
quent traffic class that merges with the predominant,
normal class. In this situation, statisticians call this
malicious traffic a contaminant [1] of normal traffic.
Contaminants have their own probability distribution
functions (pdf’s) and are visible only to the extent they
impact the target distribution. One way they are visi-
ble is as outliers. (Outlier analysis is decidedly different
from population-based analysis. It even has its own la-
bel, discordancy [1].) Restating the problem pointed
out in the previous paragraph, the dominant problem
in anomalous intrusion detection is related to the nor-
mal and malicious traffic pdf’s of the factors measured.
The pdf’s aren’t distinct enough and malicious traffic is
such a small fraction of the total, that it perturbs the
expected pdf very little. In this situation, malicious
traffic is all but indistinguishable. One way to address
this issue is to identify metrics where the pdf’s are so
distinct that even a small amount of contamination is
observable. This is the approach we take to evaluating
our potential metric.

While traffic-based detection might seem limited to
external attacks on an information system, the ap-
proach really has much wider application. We be-
lieve that the proper metric, with appropriate mod-
ification, can be used to detect suspicious traffic be-
tween any two information system components or sub-
components. Communication can be via an internal
bus, an intranet or the Internet. Internal use could aid
in detecting insider attacks, as well as provide a second
line of defense against outsiders. We briefly explore is-
sues and opportunities in Section 13.

5. An Information-theoretic paradigm

Those who specialize in measurement theory em-
phasize the need for a theoretical framework [35]. Be-
cause the digital universe is new, it is poorly character-
ized. A theoretical basis relevant to malicious activity
and intrusion detection is lacking. We have found no
mainstream intrusion detection systems (IDS’s) that
are based on a model which differentiates normal from
malicious activity. Researchers such as Chebrolu and
Sung [8, 38] are dealing with descriptive measures,
which typically lack an information-theoretical basis.
Recently, some researchers have begun to wonder if the
lack of a theoretical framework could be the cause of
anomalous intrusion detection systems complexity and
poor performance in detecting unknown attacks. Work
at the University of North Carolina [29] successfully

applied information theory to the problem. Bush and
Evans [5] developed a physics of information primarily
based on information theory. Among many other re-
sults, they successfully differentiated 95% of malicious
FTP traffic from normal with only .02% false positives
[12].

Evans only had 5% false negatives, using a single
metric and a simple (single) rule-based detection al-
gorithm. A similar test using twenty-three metrics
and sophisticated detection algorithms reported almost
46% false negatives with 2% false positives [28]. Evans’
approach returns almost an order of magnitude im-
provement in detection. Applying Occam’s Razor

Among all hypotheses consistent with the
facts, choose the simplest[23, 26],

it is hard not to conclude that information theory de-
serves scrutiny, at the very least.

One may well wonder why information theory
seems to successfully address the seemingly intractable
anomalous intrusion detection problem. One answer
may be, as discussed at length by Bush and Evans [5],
that it takes advantage of one difference between legit-
imate users and a common type of unauthorized users
— system knowledge. Often an intruder initially has
little or no knowledge about the target information sys-
tem [5]. However, based on study of attacker behavior
[21], we can infer that an intruders’ likelihood of suc-
cessfully achieving their goal increases significantly as
their system knowledge increases. Much as a blind per-
son sweeping the path in front of them with a cane to
get the lay of the land, this class of intruder must feel
their way around the system. It’s not unusual for them
to probe a system during an attack. These probes are
atypical — legitimate users have little need to probe
the system. They can easily navigate the system and
promptly access the desired information or activate the
desired service.

As noted earlier, information-theory-based met-
rics — especially Kolmogorov-complexity-based met-
rics (K) — have been successfully used to detect spe-
cific types of malicious traffic. It’s also been used to as-
sess information system vulnerability. We believe that
just as K can identify system vulnerabilities [5], K can
be an effective metric for detecting anomalous intru-
sions. Our initial phase builds on Bush and Evans ob-
servations regarding an intruders lack of system knowl-
edge. Probes sent out by intruders have a lot of simi-
larity to radar and sonar scans. Radar and sonar op-
erators learn of a target’s existence when they receive
a return signal. The signal structure gives them infor-
mation about the target’s nature. In the same way, in-
truders learn of a targets existence when they receive a



return packet. From the packet’s contents (both pay-
load and header), the intruders learn about the sys-
tem’s makeup. In the case where the intruder knows
almost nothing about the target system, initial probes
test for openings into the system. Packets are sent out
to specific address ports in hopes of some response.
Just as radar and sonar scans are detectable by those
being scanned, we believe scan packets are detectable.

5.1. Information theory and intrusion de-
tection

Bush and Evans dedicate many pages to develop-
ing a physics of information and applying it to intru-
sion, intruders and malicious traffic [5]. That work is
too lengthy to share here, but ultimately they choose
Kolmogorov complexity as a key concept. Kolmogorov
complexity (K) describes a mechanism for identifying
information density of a string [24, 25]. As defined in
[9],

the Kolmogorov complexity KU (y) of a string
with respect to a universal computer U is de-
fined as

KU = min
p:U(p)=y

l(p),

the minimum length over all programs that
produce y and halt. Thus KU (y) is the short-
est description length of y over all descriptions
interpreted by computer U .

Entropy, the more common information density met-
ric, was passed over for good reason. It relates to the
expected value of information density going through a
channel. One would hope that malicious traffic is not
the norm, but as discussed previously, would usually be
considered a contaminant [1] of normal traffic. In this
case, detecting malicious traffic requires differentiating
strings. Rather than working with averages, intrusion
detection requires specific values for each string: the
very thing measured by K.

It’s important to note that in our context, the length
(l) of Kolmogorov’s program (p) really consists of two
parts:

l(p) = l(software) + l(y′),

where software is the collection of routines on the uni-
versal computer U and y′ is the software’s input string
that ultimately outputs y. Fortunately, data compres-
sion is an active field of study applying this very con-
cept. For any specific string y, a compression algorithm
can define a custom alphabet and a (compressed) string
using that alphabet. The alphabet and compressed
string together, then, represent the maximum informa-
tion density for the target string available from that

compressor. (K is actually immeasurable. In general
there is no guarantee that any given compressed string
is the best. There is always the possibility that an-
other, more concise expression exists.)

By definition, K includes the program length. Ide-
ally, each output string y would be created by a custom
input string y′ and custom program p. For our purpose,
however, data compression uses a general purpose pro-
gram of fixed length (l(software) = c). In the general
case, as l(y) increases, so will l(p). However, since the
software length is fixed, its contribution to K(y) di-
minishes:

lim
y→∞

KU (y) = l(y′).

Since the program’s contribution approaches zero, we
can ignore the program length and focus solely on the
compressed input string.

So far, information-theory-based metrics have
proved to be quite versatile. Various Kolmogorov com-
plexity aspects have been used:

• to detect Distributed Denial of Service (DDoS) at-
tacks [27],

• for information system vulnerability assessment
[14],

• to detect viruses [18],

• to detect FTP attacks [13].

Mutual information, another information theory con-
cept, has been used to detect UDP flooding attacks
[19]. All of this work has successfully demonstrated
that K is useful for measuring a wide assortment of
very specific information assurance tasks. Because of
its very versatility, we suspect it is also useful for more
general issues. We will test Kolmogorov complexity’s
utility as a pre-selection tool for a general purpose IDS.
In particular, we shall focus on detecting a K charac-
teristic common to anomalous intrusions. This is an
endeavor ideally suited to K. Due to their novelty,
anomalous intrusions are quite difficult to detect using
conventional measures.

6. Applying Kolmogorov complexity to
anomalous intrusion detection

Compared to normal traffic, malicious traffic is a
contaminant and thus generates outliers to the nor-
mal traffic pdf. Quantifying just how much K for any
particular packet varies from the norm will indicate
that packet’s degree of discordancy. This may also
be a useful flag for an intrusion. We can determine
this by comparing target traffic K to a baseline. (In a



real-time test, the target traffic would be the current
traffic.) The more the target K varies from the base-
line/normal value, the greater the likelihood the target
is or includes, malicious traffic. Information distance
(E) provides us the appropriate concept [2]. The sim-
plest value would be absolute distance, the difference
between the actual and expected values of K;

E = K(actual)−K(expected).

There is a problem with this value however. Network
traffic packet sizes vary greatly. Comparing results for
different packets will be difficult. Also, should differ-
ent units be used, the observed values would have to
be converted. A unit-less value resolves both of these
considerations. We shall use relative distance (ER) in-
stead;

ER =
K(actual)−K(expected)

K(expected)
.

Since K ≈ CompressedF ileSize, we can restate rela-
tive distance as

ER =
∆CompressedF ileSize(actual − expected)

CompressedF ileSize(expected)
.

ER can then be tested against positive and neg-
ative threshold values. Any packets exceeding a
threshold will then be flagged for further examina-
tion. The actual CompressedF ileSize is measured
directly. Expected CompressedF ileSize is calcu-
lated from the efficiency function (TargetF ileSize =
f(CompressedF ileSize)) for the specific data com-
pressor in use.

7. Compression process overview

Each compression algorithm has its own distinct
process, however all compressors follow a similar pro-
tocol. Briefly stated, compressors search data streams
looking for repetitive sections that can be replaced with
shorter flags. The original file, then, is broken into two
parts:

• a structured partition containing a list, dictionary
or other data structure allowing the algorithm to
reconstruct the repetitive portions.

• an unstructured partition that contains the non-
repetitive, random portion of the data stream.

It’s important to note that depending on the compres-
sion algorithm’s sophistication, there may be unde-
tected repetitive sub-strings remaining in the unstruc-
tured partition. This undetected repetitive structure
and the compactness of the structured partition are
the basis for the major performance differences between
compression algorithms.

8. Compression efficiency measures

Data compressors are presently evaluated by com-
paring compression ratios and execution speed (for
compression and decompression) on corpora — fixed
bodies of data. The most commonly used data set is
the Canterbury corpus [36]. This corpus is divided into
a number of different data types, each of which is com-
pressed separately. The compression ratio, as well as
compression and decompression times, are measured
for each file. These data are then compared with re-
sults for other compressors to get an idea of relative
performance. Such test results are publicly available
[3, 17, 34, 31, 36].

A number of factors affect a compressor’s perfor-
mance:

• Compression algorithm: The major factor affect-
ing compressor performance is the process by
which the compression takes place. This is be-
yond the scope of this work, but Nelson is a good
online algorithm overview [34].

• Target file size: In a perfect world, compression ef-
ficiency increases with file size — asymptotically
approaching a maximum defined by the file type
and compression algorithm. This is because pat-
terns identified in the structured partition can be
repeated more in a large file. Also, more repetitive
structures are likely to be identified.

• File overhead: As with all files, compressed files
have overhead. Some overhead is Operating Sys-
tem and/or File System dependent. The balance is
necessary for the decompressor. Compressed files
have a compression algorithm identifier, decom-
pression switch settings and data on the structured
and unstructured string portions. For practical
purposes, file overhead is fixed in size and thus it
affects small files most significantly.

• Compression software design trade offs: The ulti-
mate compression achieved by any compressor is
directly associated with the CPU time consumed
in that effort. As a rule, the longer a compressor
works, the better the compression will be. Un-
fortunately, waiting is contrary to human nature.
The slower a compressor works, the less accept-
able it is to the market. Market acceptance and
usability (in a real-time application, for instance)
are directly impacted by how fast the compres-
sor executes. Programmers have to choose a bal-
ance for their compression product. One way of
doing this is to limit the size of the structured
partition. On large files, the structured partition



will fill up prematurely, causing some otherwise
detectable repetitive sub-strings to remain in the
unstructured partition. This reduces compression
efficiency on large files. In this study, we are com-
pressing blocks of concatenated Internet packets.
Since structures common in initial packets in any
block may be rare in following packets, the adverse
affect on compression efficiency may be especially
noticeable.

As a consequence, compression efficiency varies with
file size. Published, corpora-based data may be suffi-
cient for many needs, but fall short for this work. We
need a compression rate versus packet block size per-
formance baseline for normal Internet traffic.

9. Experimental objective

Based on work done by Evans [13], we suspect that
the measure we propose will detect many attacks. Mix-
ing attack types in the same data stream, however, in-
troduces a potential confounding variable —one that
can hide otherwise significant results. We therefore
limit this study to one attack process, system scans.

There is a benefit to starting with system scans:
they often precede intrusive activity. For a sysadmin,
knowledge of a scan in progress is valuable, because this
may herald a more ominous event. Such information
would give the sysadmin’s time to increase intrusion
surveillance efforts.

10. Experimental procedure

In this section, the process used in this investigation
is discussed.

10.1. Characterize compressor performance
on ordinary Internet traffic

1. Capture network traffic Using pcap [22] — a
packet capture utility — network traffic was cap-
tured at the University gateway router. Due to the
extreme variability of network traffic, six 700Mb
samples, a through f, were taken at randomly se-
lected times on two different days. The traffic was
then filtered into three partitions: incoming, out-
going and inside only. This was done to better
match traffic that an IDS outside an intranet fire-
wall would actually receive. Of special concern was
limiting potential confounding effects. For exam-
ple, inside only traffic would never be transmitted
on the Internet. Including this data in test sam-
ples could skew the results. Outgoing and inside

only traffic could be useful for considering other
intrusion issues. Outgoing traffic might be used to
study zombie detection in a system. Inside only
traffic could be used for studying insider attack de-
tection. These and other potential uses are briefly
discussed in Section 13.

2. Build packet blocks Compressing numerous small
files could take an unacceptable amount of time.
Also, due to unavoidable overhead, compression
efficiency decreases as file size decreases. In or-
der to speed the process, we decided to use packet
blocks — packets concatenated in arrival order
during a specific time interval (time slice). An
alternate blocking scheme would have been to con-
catenate packets until the block exceeds a prede-
termined size. We chose time slices for three rea-
sons.

• Using the system clock generates somewhat
less overhead, thus speeding the blocking pro-
cess slightly.

• Block size varies, depending upon traffic rate
and packet block size. This information may
be a useful intrusion detection factor.

• A clock-based grouping limits processing de-
lay.

Along with the potential benefits of using time-
slice generated packet blocks, there are three po-
tential problems:

• Sensitivity would be reduced, since malicious
packets would likely be included with ordi-
nary traffic. However, we anticipate this will
be partially offset by the increased compres-
sion range that the packet blocks would fall
in. Increased range means increased sensi-
tivity. Figure 1 illustrates this point. Some
discretion will be necessary to balance sensi-
tivity and speed; calibrating compression rate
versus file size will be a key to this decision.

• Results could be masked because of the vari-
ation in compressor efficiency for different file
sizes. We anticipate our clock-based group-
ing to generate a wide range of packet block
sizes. This makes calibrating our compressor
all the more important.

• The median packet block size may vary con-
siderably over time. Short-term — over time
intervals of an hour or so — traffic frequency
is random. Long term, however (e.g. a day
or week), noticeable patterns emerge. For a



Figure 1. The vertical lines at 1 KB and 30KB
show mean compression efficiency for two
different packet block sizes. In this example,
the range for the more compressible 20KB
packet blocks is about three times that of 1
KB blocks. We believe that for any given
string mix, compression is relative. There-
fore a lower Inverse Compression Ratio (ICR)
will result in a wider compression distribu-
tion for individual blocks. The increased dis-
tribution will increase sensitivity.

business, traffic may all but stop after clos-
ing, while traffic at a residence may well peak
in the evening. Using a fixed time slice may
result in unacceptable packet block size vari-
ations. Since our data sets consist of two sep-
arate channels (incoming and outgoing) col-
lected at random times, we base the time slice
for each set on the average bytes/second over
the collection period.

There were two other potential confounding vari-
ables that could have impacted our results:

• On the occasions when a packet spans time
slices, starting in one, but ending in another,
we chose not to fragment packets. Packets
were blocked based on their arrival time. The
concern here was building the dictionary in a
consistent manner. Starting a block with a
packet fragment could well impact final com-
pressed file size. Such an effect has been ob-
served with the LZ78 compression algorithm
[15].

• One issue specific to pcap files was that pcap
overhead is attached to each packet. This was
stripped off prior to bundling, as it would not

be present in normal network traffic.

3. Compress packet blocks Each packet block was
compressed by the targeted compressor and the
Inverse Compression Ratio (ICR) was calculated.

ICR =
CPBS

UPBS

CPBS stands for the compressed packet block
size, UPBS stands for the uncompressed or tar-
get packet block size. ICR was chosen because in
the general case, it’s bounded by zero and one, as
opposed to the Compression Ratio, which ranges
from one to infinity. (With extremely small files,
compressed files can actually end up larger than
the uncompressed versions [15]). The occurrence
of this condition varies from compressor to com-
pressor. Our time slice value was chosen to avoid
generating compressed packets with ICR’s greater
than 1.

4. Analyze data As discussed earlier, the classic,
corpora-based analytical approach would not pro-
duce the necessary compression efficiency infor-
mation. Consequently, statistical procedures were
used extensively.

• Data distribution; The first step was to exam-
ine the distribution of data set sizes. Distri-
bution matching showed that the data are a
good fit to the Weibull distribution [37], with
a correlation around 98%. Because the raw
data are well described by the Weibull distri-
bution, distribution of the calculated value
of interest (ICR) can be derived. While out-
side the scope of this paper, the moments for
the ICR distribution can be shown to exist.
Drawing on Casella & Berger’s expression of
the Central Limit Theorem (CLT) [6], the
CLT can be applied to both the packet block
size and the ICR. Applying the CLT allows
us to work with sample means, which have
a Normal (Gaussian) probability distribution
function. This both simplifies and improves
the quality of the analysis. As a result, the
error for all means used in this work (at a
95% confidence) are consistently within 1%.

• Data compressor efficiency: The next step is
to define the efficiency function for the chosen
data compressor. In order to visually iden-
tify the form the compressor efficiency func-
tion will take (such as exponential or poly-
nomial), the initial analysis considered ICR
over packet block sizes ranging from 10 KB



to 19 Mb for one data set. Compression was
with Win RK, a highly rated data compres-
sor. When displayed on a log-log graph, a lin-
ear relation appears. This can be seen in Fig-
ure 2. There is a separate graph for each data
set, showing results for incoming and outgo-
ing traffic. Comparing sets, we find two sim-
ilarities: all datasets have almost the same
slope and the ICR’s are similar. Such a re-
lation suggested a power function (y = bxa)
would describe the packet block size-ICR re-
lation.

• Compression efficiency: Win RK has been
applied to the full suite of data sets, with ex-
tremely consistent results. b from the above
power function can be taken as the theoret-
ical starting point for data compression of a
one byte file. This is a theoretical value. In
no case can a tiny file be compressed much.
a in the power function appears as the slope
in Figure 2. Of the two constants, a most
greatly describes the performance curve. As
compression performance improves, the slope
increases. For this reason, a is the domi-
nant factor for our study. Although b varies
somewhat across the data sets, the lines are
virtually parallel, indicating an invariable
slope; all of the data sets shown have vir-
tually the same a. Although actual compres-
sion may vary from packet block to packet
block, we can confidently conclude that com-
pressor performance is nearly constant for
blocked packets. Pooling the results from all
data sets, we calculate the mean power func-
tion for normal Internet traffic compressed by
Win RK:

ICR = 0.9908 UPBS−0.0202.

Figure 3 shows the efficiency curve and up-
per and lower bounds for the 95% confidence
interval.
Figure 3 also suggests that our earlier stated
belief that a lower ICR would mean a wider
ICR range for packet blocks was wrong. In
this case, however, being wrong was good.
The narrower distribution actually strength-
ens our results. Investigation into why the
ICR range stays relatively constant is ongo-
ing.

• Packet block size: With a baseline estab-
lished, we can now identify an optimum
packet block size. All things being equal,

Figure 3. The three curves on this graph
show the power function for normal Inter-
net traffic when compressed with Win RK.
The middle curve is the mean, the outer two
curves bracket the 95% confidence interval.

the inflection point of the curve in Figure
3 (median block size, 20k bytes) seems a
reasonable guess. We judge that this point
is a reasonable balance between processing
speed and granularity. Packet block size in-
creases beyond this point yield minor im-
provements in compression, but continue to
degrade sensitivity and adversely impact run-
time performance. Ultimately, however, the
optimum packet block size will be the one at
which we find the greatest relative distance
between normal and attack traffic. The opti-
mal packet block size is discussed further in
the next section. The ideal case, however, is
when the same packet block size is equally
effective for all types of attacks.

10.2. Characterize compressor performance
on malicious Internet traffic

The characterization procedure for malicious Inter-
net traffic is the same as for normal Internet traffic
with one exception, data acquisition. Capturing pure
malicious traffic “in the wild” attacking an ordinary
information system is difficult. Generating malicious
traffic against an enterprise information system is po-
litically incorrect. We avoided these issues by collecting
data from a red team / blue team (attack / defense)
test being run in a controlled environment.

A variety of scan techniques were used:

• TCP SYN scan (nmap -sS) [16]

• TCP Xmas scan (nmap -sX) [16]



(a) Compression efficiency for data set a. (b) Compression efficiency for data set b.

(c) Compression efficiency for data set c. (d) Compression efficiency for data set d.

(e) Compression efficiency for data set e. (f) Compression efficiency for data set f.

Figure 2. Each of these log-log graphs represents the ICR vs. file size relation for one data set.
Comparison of the lines for each set shows that each relation has a similar slope. Also, the ICRs are
constrained to a relatively narrow range.



• The default HPING2-based scan set [4]

The tests generated a little over 2Mb of scan traffic. In
contrast to the 5+Gb of normal traffic, this is a tiny
data set. This did result in greater uncertainty for scan
traffic than for normal (This is visible in the width of
the 95% confidence intervals in Figure 4). As shown
next, however, we did have sufficient data to give us
significant results.

Following the analytic process established for nor-
mal Internet traffic, we determined the power function
for scan traffic when compressed by Win RK:

ICR = 0.2297 UPBS−0.00576.

Figure 4 shows how the efficiency curves for normal
and scan Internet traffic compare. A substantial gap
can be seen between the upper three lines, represent-
ing the 95% confidence interval band for normal traffic
and the lower three lines representing the 95% confi-
dence interval band for scan traffic. Determining the
probability of the normal efficiency curve and the scan
efficiency curve being the same was beyond the capac-
ity of our statistical software. We can say, however,
that the probability is less than 1 · 10−4.

Figure 5 shows how our proposed metric, relative
distance, separate normal and scan Internet traffic.
Not surprisingly, analysis using the relative distance
metric we propose from Section 6 (shown in Figure 5)
tells a similar story to that told by ICR. The median
relative distance for normal traffic should fall within
+/- 0.076 of the observed value 95% of the time, even
with a 1.2Mb packet block size. The band narrows
somewhat as packet block size decreases — the 20KB
packet block median containing normal traffic would
fall within +/- 0.056 95% of the time. The important
feature of this graph is that the expected relative dis-
tance for scan traffic stays almost constant across the
data range. This brings into question the value of cal-
culating relative distance.

11. Optimal Packet Block Size

The operational question of concern to sysadmins is
“How many false alarms (false positives) will I have and
how many scans will go undetected (false negatives).
Figure 6 shows actual data for the “20k” time slice.
An inspection of the raw data is encouraging. Even
though the small size of our scan traffic doesn’t give as
fine a granularity as our normal traffic sample, we can
make some conclusions. If we set the scan traffic ICR :
normal traffic ICR threshold at .53 – above the 99% CI
for scan packet block ICR, then less than 1% of the scan
packet blocks will register a false negative and less than

Figure 4. The upper of the two sets of curves
show the mean (center top set) and upper
(upper top set) and lower (lower top set)
95% CI boundaries for normal Internet traffic.
The lower set shows the mean (center bot-
tom set) and upper (upper bottom set) and
lower (lower bottom set) 95% CI boundaries
for scan traffic. There is a substantial gap
between the two sets of lines. This suggests
that complexity may be useful in detecting
scanning activity.

8% of normal packet blocks will register a false positive.
At a 95% CI for scan packet blocks, the false positive
rate drops to 0.3%. This is in line with those reported
by Bush and Evans [5] in their work on Kolmogorov-
complexity-based intrusion detection of FTP attacks.

Comparing Figure 4 and Figure 6, there is seem-
ingly, a discrepancy between calculated and observed
results. Based on our statistical analysis, it would ap-
pear that the likelihood of a false positive is 38σ and
false negatives have a likelihood of 8σ. Both are effec-
tively zero. This is because the values shown in Figure
4 show the expected median value. The Central Limit
Theorem is one of the better tools for calculating ex-
pected values. The CLT, however, looses the actual
data distribution. The all normal packet block ICR
distribution shown in Figure 6 is strongly left skewed
and the all scan packet block ICR distribution strongly
right skewed. The tails overlap, thus there is some risk
of false positives and negatives.

The 20KB packet block size promises a significant
improvement over conventional anomalous intrusion
detection metrics. However, we may be able to do bet-
ter. Figure 7 shows the difference between the upper
scan traffic ICR and the lower normal traffic ICR 99%
CI limits for packet blocks ranging from 20KB to 400
KB. The 99% CI’s for 20KB packets overlap. At 50KB,
the overlap is gone and the separation rises asymptot-



Figure 5. The upper band indicates the 95%
CI range for the relative distance of normal In-
ternet traffic packet blocks. 95% of normal In-
ternet traffic packet blocks will have a relative
distance between those two lines. The bot-
tom band shows the relative distance range
for the relative distance of scanning packet
blocks (at the 95% CI). As can be seen, the
two bands are widely separated.

Figure 6. The dashed vertical line indicates
the upper 99% CI for the scan traffic ICR (the
leftmost distribution). The solid vertical line
indicates the lower 99% CI for the normal traf-
fic ICR (the rightmost distribution). Since the
dashed line is right of the solid line, the two
distributions overlap at the 99% CI.

ically up to a limit around 0.2 ICR. From our data, it
would appear that there would be little benefit to us-
ing a packet block size above approximately 250 KB.
The graphs in Figure 8 show how the normal and scan
packet block ICR distributions diverge as block size in-
creases. The small scan traffic sample size results in
a large degree of uncertainty in our large packet block
distributions. Consequently, it’s not possible to esti-
mate false positive and negative rates for the 320KB
results with reasonable accuracy. We observed that as
normal Internet packet block size increases, the distri-
bution narrows. It’s reasonable to expect the scan traf-
fic distribution to do the same. If that’s the case, then
for the data we tested, false positives and negatives be-
come exceedingly small when the median packet block
size is around 320KB. Near-zero errors — this is a
significant improvement over the results reported by
Lazarevic, et al. [28] for conventional IDSs detecting
anomalous intrusions. Their best algorithm, using 23
metrics, yielded zero false negatives, when configured
to allow 8% false positives. We’re able to exceed these
results with one metric. In order to verify this propo-
sition, we continue to gather more malicious data sets.

While increasing packet block size improved results
in a laboratory setting, this may well not prove true in
practice. We used clean scan traffic. Rarely will this be
found outside a laboratory setting. In an operational
environment, malicious and normal traffic are mixed.

12. Algorithm use in Operational Secu-
rity

While “clean room” studies provide important in-
sights, rarely can lessons learned be applied directly in
real-world settings. This is certainly true in anoma-
lous intrusion detection. Malicious exploits are just a
small segment of a sea of legitimate activity: statis-
tically, may just be an insignificant outlier. However,
operationally, they can be catastrophic. The challenge
is finding detection processes that are minimally im-
pacted by innocuous activity. Practitioners in the field
want and generally need, a near-zero error rate.

There are two factors that influence this algorithm’s
mix of false positives and negatives and overall error
rate.

• Packet block size — As can be seen in Figure 8,
as packet block size increases, the distributions
narrow. When the packet blocks are pure — all
normal or all scan packets, this means more sep-
aration between traffic types. The result is less
misclassification. Unfortunately, such separation
is rarely the case in an operational environment.



(a) The separation between 99% CI for the 50KB scan and
normal traffic packet blocks is around .02 ICRs. We would
expect the failure rate to be well below those reported for
conventional anomalous intrusion detectors.

(b) The separation between 99% CI for the 320KB scan and
normal traffic packet blocks is around .20 ICRs. This appears
to make the chance of false positives at least 5σ. The chance
of false negatives may be even less.

Figure 8. Probability distributions for 50KB and 320KB scan and normal traffic packet blocks are
compared in this figure. In contrast to the distributions shown in Figure 6, the distributions don’t
overlap. As packet block size increases, the distributions tighten. This results in a much improved
detection accuracy in our lab conditions. As discussed in Section 12, these results may be difficult
to attain in real-world settings.

Figure 7. The separation between the ICR
distribution for normal Internet traffic and
scan traffic increases as packet block size in-
creases, asymptotically approaching a max-
imum around 0.2 ICRs. For small packet
block sizes, the confidence intervals actually
overlap (negative separation). The separa-
tion goes positive around the 50KB packet
block size. There appears to be little bene-
fit to using a packet block larger than 250KB.
Depending upon the acceptable error rate, a
smaller packet block size may be usable.

Malicious and normal traffic are usually mixed.
(Sophisticated attackers will, in fact, attempt to
keep their illicit traffic “below the radar” by keep-
ing their packet rate so low that they are unde-
tected. See the Appendix) Packet blocks consist-
ing of mixed traffic will have ICRs between the
bounds for pure normal and pure scan traffic. As
packet block size increases, scan packets are more
likely to be mixed with other packet types and go
undetected (resulting in a false negative). Small
packet block sizes will be more sensitive to scan
traffic, but at a cost. Both traffic distributions
will spread, increasing the likelihood of misclassi-
fication.

• Threshold — For any given packet block size, a
threshold will be set. Any packet block with an
ICR below the threshold will be labeled as contain-
ing scan traffic. As the threshold moves away from
the normal traffic median and approaches the scan
traffic median, the risk of false positives decreases.
The risk of false negatives increases, however.

A sensitivity analysis would help quantify the trade
offs involved. The best approach may be to use packet
block ICR as a prescreening metric. Set the ICR
threshold sufficiently high to reduce the false negative
rate to an acceptable level, then apply another IDS to
suspect packet blocks.

Another issue is cost-effectiveness. The time slice
used to gather 320KB packet blocks of Internet traf-



fic at the University perimeter varied with the sample,
but ranged around one second. The Dell GX240 used
for compressing the packet blocks could process one
packet block in around ten seconds. Even with this
relatively modest traffic rate, in order to use Win RK,
an enterprise would need a distributed processing array
involving a considerable equipment investment. Many
other compression algorithms are considerably faster.
A review of processing speeds reported using the Can-
terbury Corpus [36] shows that the “ZIP” family of
compressors could come close to keeping up with a
320KB/sec data rate on our test equipment. The con-
cern is, can a lower efficiency compressor such as ZIP
maintain an acceptable separation between scan and
normal Internet traffic? This issue is deferred for fu-
ture examination.

13. Additional Applications

While this study focused on Internet traffic at a
network gateway, potential applications appear to be
wide-ranging:

• Using a slightly modified process, Internet Service
Providers (ISPs) at all levels — local to backbone
— may be able to detect network denials of service
(NDoS) at an early stage, allowing ISPs to take
preventative action sooner. This could slow down
virus spread, for example, giving sysadmins more
time to activate defenses. Matrawy, et al. [33]
points out that NDoS’s can have numerous causes.
Our metric should be equally effective in detecting
a wide range of NDoS-causing traffic.

• Intranet sysadmins might more readily detect in-
sider attacks by:

– using this method at internal router and /
or device network interface cards (NIC’s). In
addition to addressing insider attacks, this
would also provide a second layer of detection
for external attacks.

– tracking bus traffic within a device looking
for low complexity traffic bursts. This could,
in some instances, detect malicious traffic
coming from external sources such as remov-
able media, keyboards and NICS, as well as
something like a time bomb placed on a hard
drive. Such a tracker could be implemented
with software. It could, however, be bypassed
by an attacker using a boot disk. An attacker
would have a much more difficulty bypassing
a hardware or firmware implementation.

• Compromised system devices acting as zombies
could potentially be discovered by testing outgoing
network traffic.

Just because something is possible, however, does not
mean it should be done. Adding IDS functionality at
any level will increase system overhead. In order to
maintain acceptable system utility to the user, the se-
curity level should be balanced against the system per-
formance. Due to the wide range of user needs and
expectations, this will by necessity, occur on a case-by-
case basis.

14. Future work

As with all research, one answer generates multiple
questions:

• “In the wild”, scanning packets will often be di-
luted by normal traffic. How much does this
impact the ability of relative distance to detect
scans?

• How well does this process work on other attack
types, including a mixture of attacks?

• How can this method be combined with other
intrusion detection methods to reduce detection
errors and improve performance? We expect
that when used in conjunction with other well-
established metrics, ICR will reduce errors consid-
erably. Since scans generally test for many open
ports, scan packets will most likely be included
in more than one packet block. The false posi-
tive rate can be reduced greatly by not sending an
alarm on one suspicious packet block.

• The computational overhead of calculating rela-
tive distance may not be necessary. If ICR is sub-
stituted, how much does that increase the error
rate? The flatness of the relative distance slopes,
seen in Figure 5, suggests that over the relatively
small range of packet block sizes produced by our
algorithm, calculating relative distance may not be
necessary. Testing ICR against a boundary may
be sufficient.

• Compared to other well established compression
algorithms, Win RK is slow. How well does ICR
detect scans with higher performance, but less ef-
ficient compression algorithms?

• We concatenate packets in arrival order when mak-
ing blocks. Could another packet block assembly
procedure yield better results?



• Evans observed, in one of his reports [15], that
the order in which substrings were placed affected
compression efficiency. How much does that im-
pact detection accuracy?

• Bush and Evans [5] also discovered that in the
case of FTP attacks, eliminating some fields be-
fore testing improved detection. Can we improve
our results here in a like manner?

• An enterprises’ Internet packet mix can vary
greatly over time (workday vs. weekend, for in-
stance). This experiment used University In-
ternet traffic. The efficacy of this detection
method needs to be evaluated using normal (non-
malicious)Internet traffic generated by an assort-
ment of different enterprise types, analyzed as a
function of time.

We will be conducting further experiments to address
these open questions.

15. Conclusion

The usefulness of information-theory-based metrics
for intrusion detection is reinforced by this work. In
particular, packet blocks containing scan traffic are
shown to have a radically lower ICR than packet blocks
containing normal Internet traffic. In a laboratory set-
ting, we discover that as packet block size increases, er-
rors in classifying the two distributions (scan and nor-
mal traffic) dropped. Ultimately, we show that the two
groups can be distinguished with a vanishingly small
risk of false positives or negatives.
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17. Appendix:
Low Frequency Attack Detection

Sophisticated intruders may well try to avoid detec-
tion by diluting their traffic in legitimate system ac-
tivity. This would seem to be an effective detection
avoidance technique. A lower attack frequency defi-
nitely impacts IDS design and performance. For ex-
ample:

• For pattern matching, patterns must be compared
over greater time spans or greater packet volumes.
This means a greater commitment of system assets
to intrusion detection.

• For statistically based algorithms, smaller devia-
tions from normal traffic or other system and user
statistical profiles must be tolerated. Lower tol-
erances mean an increased false positive rate. In
order to process the additional alarms, more sys-
tem assets and/or sysadmin time will be required
to track IDS errors.

This could become an endless cycle; attackers lower
their attack rate to avoid detection, so more system
assets are committed to intrusion detection, causing
attackers to lower their rate more and therefore caus-
ing defenders to increase system assets used for intru-
sion detection and on ad infinitum. Taken to the limit,
IDS’s must be able to reliably identify single malicious
events. In special cases, this may be possible. Two
counter examples move us to conclude that single event
intrusion detection is impossible in the general case. A
single ping and a single failed login attempt are such
events. Both occurrences are, or can be, the result of
everyday, legitimate activity. Detecting a single event
in an anomalous intrusion is even less likely; their very
novelty already makes detection difficult.

The metric we present herein appears to improve
suspicious traffic partitioning. To the extent this oc-
curs, intrusion detection should improve. Our metric
does not, however, impact the basic low frequency at-
tack issue. At best, we could hope that relative dis-
tance or a related metric would tip the balance in the
defenders favor. If sufficient system assets can be af-
fordably committed to intrusion detection, then the
detectable attack frequency will become so low that
all but the most dedicated attackers will abandon that
avoidance technique as too time-consuming.
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