
GE Research &
Development Center

__

Technical Information Series

Detecting Distributed Denial-of-
Service Attacks Using Kolmogorov
Complexity Metrics

A.B. Kulkarni, S.F. Bush, and S.C. Evans

2001CRD176, December 2001

Class 1

Copyright © 2001 General Electric Company. All rights reserved.

Corporate Research and Development

Technical Report Abstract Page

Title Detecting Distributed Denial-of-Service Attacks using Kolmogorov
Complexity Metrics

Author(s) A.B. Kulkarni Phone (518)387-4291
S.F. Bush 8*833-4291
S.C. Evans

Component Information and Decision Technologies

Report
Number 2001CRD176 Date December 2001

Number
of Page 8 Class 1

Key Words Kolmogorov complexity, denial-of-service, active network, entropy

This paper describes an approach to detecting distributed denial of service (DDoS) attacks that is
based on fundamentals of information theory, specifically Kolmogorov complexity. The algorithm is
based on a concept of Kolmogorov complexity that states that the joint complexity measure of random
strings is lower than the sum of the complexities of the individual strings if the strings exhibit some
correlation. Furthermore, the joint complexity measure varies inversely with the amount of correlation.
The proposed algorithm exploits this feature to correlate traffic flows in the network and detect possible
denial-of-service attacks. One of the strengths of this algorithm is that it does not require special filtering
rules and hence it can be used to detect any type of DDoS attack. This algorithm is shown to perform
better than simple packet-counting or load-measuring approaches.

Manuscript received November 12, 2001

1

Detecting Distributed Denial-of-Service Attacks
Using Kolmogorov Complexity Metrics

A.B. Kulkarni, S.F. Bush and S.C. Evans

Introduction

Distributed denial-of-service attacks are caused by the attacker flooding the target
machine with a torrent of packets originating from a number of machines under the attacker’s
control. These machines are called ‘zombies’. The attacker typically uses ICMP or UDP
packets for the attack. Typical detection techniques [1,2] for these types of attacks rely on
filtering based on packet type and rate. Essentially, the detection software attempts to
correlate the type of packet used for the attack, be it ICMP or UDP, with the destination.
While these techniques have reasonable success, they are not very flexible. For example,
these techniques will fail if a new type of packet is used for attack or if the attack consists of
a traffic pattern that is a combination of ICMP and UDP packets. In such cases, packet
profiling is defeated. This paper describes an approach based on fundamentals of information
complexity that is both flexible and effective.

Stated as simply and succinctly as possible, we hypothesize that information, comprising
observations of actions with a single root cause, whether they are faults or attacks, is highly
correlated. Highly correlated data has a high compression ratio. The Kolmogorov
Complexity, K(x), of a string of data measures the size of the smallest program capable of
representing the given piece of data [3]. It measures the degree of randomness for the given
data. The length of the shortest program to generate a completely random string is equal to
the size of the string itself. For all other cases, it is smaller than the size of the string and the
program size becomes smaller as more regularity or pattern is discernible from the string. A
side effect of this measure is its ability to represent the correlation between disparate pieces
of data. This side effect is exploited to design an effective method for detecting DDoS
attacks.

Figure 1. Implementation in Magician Active Node

2

Approach

The DDoS attack detection algorithm makes use of a fundamental theorem of
Kolmogorov Complexity that states: for any two random strings X and Y,

cYKXKXYK ���)()()(, (1)

where K(X) and K(Y) are the complexities of the respective strings, c is a constant and
K(XY) is the joint complexity of the concatenation of the strings. Proof for the above
theorem is described in [3]. Simply put, the joint Kolmogorov complexity of two strings is
less than or equal to the sum of the complexities of the individual strings. The equivalence
holds when the two strings X and Y are totally random i.e. they are completely unrelated to
each other. Another effect of this relationship is that the joint complexity of the strings
decreases as the correlation between the strings increases. Intuitively, if two strings are
related, they share common characteristics and thus common patterns, That knowledge can
be harnessed to generate a smaller program that can represent the combined string.

The concept of “Conservation of Complexity” was introduced in [6] and explored in
detail using simulation [8]. This concept relates to the ability to discern an attack by
monitoring the complexity change due to processes occurring in the system and imposing
bounds that identify unauthorized processes – noted by complexity changes that are either too
great or too small to be from authorized processes. Figure 2 below describes the concept of
conservation of complexity. This concept was first applied to a closed system, where the
processes are known and able to be monitored by complexity probes. In the distributed case
of a denial of service attack, the process is not known, but bounds on the differential
complexity allowed by the distributed processes are still able to be enforced.

Figure 2. Principle of Conservation of Complexity

3

In terms of detection of DDoS attacks, the property given by inequality (1) is exploited to
distinguish between concerted denial-of-service attacks and cases of traffic overload. The
assumption is that an attacker performs an attack using large numbers of similar packets (in
terms of their type, destination address, execution pattern etc.) sourced from different
locations but intended for the same destination. Thus, there is a lot of similarity in the traffic
pattern. A Kolmogorov complexity based detection algorithm can quickly identify such a
pattern. On the other hand, a case of legitimate traffic overload in the network tends to have
many different traffic types. The traffic flows are not highly correlated and appear to be
random. Therefore, our algorithm samples every distinct flow of packets (distinguished by
their source and destination addresses) to determine if there is a large amount of correlation
between the packets in a flow. If it is determined to be so, then all suspicious flows at the
node are again correlated with each other to determine that it is indeed an attack and not a
case of a traffic overload.

The architecture for DDoS detection has been implemented in an active network for ease
of deployment and flexibility in testing. As shown in Figure 1, packet complexity probes
(described in detail in the next section), associated with every traffic flow through a node,
periodically sample packets in the flow. For the collected samples, the probe calculates a
complexity differential over the samples. Complexity differential is defined as the difference
between the cumulative complexities of individual packets and the total complexity computed
when those packets are concatenated to form a single packet. If packets x1, x2, x3,…,xn have
complexities K(x1), K(x2), K(x3),…, K(xn), then complexity differential is computed as:

[K(x1) + K(x2) + K(x3) +…+ K(xn)] – K(x1x2x3…xn), 2)

where K(x1x2x3…xn) is the complexity of the packets concatenated together. If packets x1, x2,
x3,…,xn are completely random, K(x1x2x3…xn) will be equal to the sum of the individual
complexities and the complexity differential will therefore be zero. However, if the packets
are highly correlated i.e some pattern emerges in their concatenation, then the concatenated
packet can be represented by a smaller program and hence its complexity i.e. K(x1x2x3…xn)
will be smaller than the cumulative complexity. In effect, we use the measure of the
compressibility of the packets accumulated in a given time interval to determine correlation.
If the complexity differential is greater than a preset threshold for the flow, the flow is
marked as suspect and the collected sample is referred to a Local Detector running on the
node.

The Local Detector receives all such samples from various suspicious flows and
correlates all the samples together using the same complexity differential calculation. If there
is only one suspect flow, no correlation is performed. If the complexity differential again
exceeds the threshold, all suspect flows (including the case of a single flow) are referred to a
Domain Detector that is running on some other node on the local network domain. The
Domain Detector in turn correlates flows received from the Local Detectors to determine if
the attack is localized or distributed using the same technique as described for the Local
Detectors. Thus, a hierarchy of detectors cooperates to detect distributed denial of service
attacks in the network itself. This hierarchy is shown in Figure 3.

4

Complexity Estimates

While it is known that, in general, Kolmogorov complexity is not computable, various
methods exist to compute estimates of the complexity. The packet complexity probe
described in the previous section uses an entropy calculation technique for estimation of
complexity. The Kolmogorov Complexity estimator, currently implemented as a simple
compression estimation method, returns an estimate of the smallest compressed size of a
string. The complexity K(x) is computed using the entropy H(p) of the weight of ones in a
string. Specifically, K(x) is defined in Equation 4 where 1#x is the number of 1 bits and 0#x
is the number of 0 bits in the string whose complexity is to be determined. Entropy H(p) is
defined in Equation 5. The expected complexity is asymptotically related to entropy as
shown in Equation 6. See [3] for other measures of empirical entropy and their relationship to
Kolmogorov complexity.

))((log)
0#1#

1#()()(ˆ 2 xl
xx

xHxlxK �

�

� (4)

)1(log)1(log)(22 pppppH ����� . (5)

�
�

��

nxl
XCxXPXH

)(

)()()((6)

The complexity estimation technique used here is not the best because empirical entropy
is actually a very poor method of complexity estimation. For example, the estimate for the
string 101010101010101010101 and a completely random string with equal numbers of 1’s
and 0’s is the same under empirical entropy. While it is true that one case does not prove
anything, it illustrates the point that empirical entropy does not account for any patterns that
may occur in the data. However, this simple case illustrates that improvement can be made.
More accurate estimates for complexity will only serve to improve our method for DDOS
detection. See [7] for an innovative and improved method for complexity measurement. The

Figure 3. DDoS detection Architecture

5

improvement of the technique described in [7] over current methods is part of ongoing
research. In future work, this technique will be used in the complexity probe and the
performance of the algorithm will be compared with respected to the two techniques.

Experimental Results

We compared our technique to a prototype packet counting algorithm for DDoS detection
and found that our technique is better discriminates traffic patterns. We used our Magician-
based [4] active network [5] testbed for the experiment for two reasons. Firstly, it is quite
easy to set up a desired topology for the network, as well as control and measure performance
using an active network. Secondly, it is easier to embed our complexity probes, which are
written in Java, inside the Java-based Magician kernel as opposed to embedding them inside
commercial routers. The results, however, can be extrapolated to real traffic settings.

The experimental setup consisted of a set of active nodes arranged in the topology shown
in Figure 4. Node AH-1 continuously generates traffic consisting of audio packets destined
for node AN-2. The load induced by this traffic is high enough that it is registered at node
AN-1 as a ‘suspicious’ flow i.e. a traffic flow whose complexity differential exceeds the
threshold. The load induced by this traffic flow is kept constant throughout the experiment.
Node AH-2 generates the attack flow. The load induced by the attack flow is varied to
determine the performance of the algorithms. The experiment is run twice, once with only the
attack source on (node AH-2 transmitting only) and the next time with both sources on (both
node AH-1 and node AH-2 transmitting). The rationale is that an attack is essentially a
sustained overload induced for some time interval. The purpose of the experiment is to
determine the effectiveness of the two techniques in separating and identifying an attack in
the presence of background traffic.

Figure 4. Topology for experiment

Figure 4. Topology for experiment

Figures 5 and 6 show the performance of the packet-counting and complexity-based
approaches as measured against the load induced by the two sources (in packets per second)
described above. Figure 5 shows that the packet-counting metric cannot discriminate between
an attack and a true overload. When the audio source is transmitting in conjunction with the
attack source, any threshold set by the packet-counting algorithm running on node AN-1 will
be exceeded leading to the false conclusion that the node is under attack. For example, based
on the attack pattern only (blue curve), we decide to set the threshold at 70 packets/s for a
load of 0.6. When the audio source is introduced, the combined traffic trips the same
threshold at a load of only 0.4, which is a false positive. Figure 6 below shows the
complexity differential versus load curve for a given sampled time interval, which in this
case was 10 seconds. The complexity-based metric does not change its behavior when a
combination of attack and traffic sources is used. This is because the attack traffic dominates
the combined flow and hence the complexity differential is roughly equal to that observed
when only the attack flow existed. Therefore, the complexity-based approach is more
accurate in separating false alarms from true attacks because it can conserve salient patterns
of a traffic flow.
Figure 5. Performance of packet-counting metric
6

7

Summary and Future Work

This paper describes an attempt at bridging the gap between the promise of the theory of
information complexity, particularly Kolmogorov Complexity, and the application of the
theory to hard problems. We embarked on the effort to help us gain a deeper understanding of
the strengths, weaknesses and challenges of the measurement, representation and calculation
of Kolmogorov complexity estimates, using the DDoS attack detection problem as a model
application. Obviously, good estimation of Kolmogorov Complexity is key to its usefulness
in identifying correlation between attack flows. Although our simple entropy calculation
technique served as a useful metric and it is computationally efficient, we are investigating
and benchmarking more estimators for K(x).

With respect to the DDoS detection technique, its performance needs to be compared to
more intelligent detection algorithms that are currently in use. In particular, its performance
has to be measured in terms of resource tradeoffs, detection and false-alarm probability and
response time. For example, the current technique performs its evaluation on the entire
content of the packet. Anecdotal evidence has shown that performance degrades if the
payload of the packet is encrypted and the size of the payload dominates the size of the
packet. Techniques that adapt to payload size are being formulated and tested.

In terms of next steps, the next challenge is identifying or developing theory using
Kolmogorov complexity for controlling the DDoS attacks and tracing the attack back to the
attacker. The fundamental hypothesis is that the attacker can be traced back using a

Figure 6. Performance of complexity-based metric

8

complexity-based approach because the attacks must have a common pattern since they
originated from a common source.

Acknowledgments

The work discussed in this paper was funded by DARPA, under the auspices of the Fault
Tolerant Networks program. Our thanks go to Doug Maughan, the manager for the Fault-
Tolerant Networks program and Scott Shyne, Air Force Rome Labs for their generous
support.

References

[1] Gil, T. and Poletto, M. “MULTOPS: a data structure for bandwidth attack detection, “
USENIX 2001.

[2] Bazek, R., Kim, H., Rozovskii, B., and Tartakovsky, A. “A novel approach to detection of
denial-of-service attacks via adaptive sequential and batch-sequential change-point methods,”
IEEE Systems, Man and Cybernetics Information Assurance Workshop, June 2001.

[3] Li, M. and Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications,
Springer-Verlag, 1997.

[4] Kulkarni, A., Minden, G., Hill, R., Wijata, Y., Sheth, S., Pindi, H., Wahhab, F., Gopinath, A.
and Nagarajan, A. “Implementation of a Prototype Active Network,” IEEE OpenArch, San
Francisco, 1998.

[5] Bush, Stephen F. and Kulkarni, Amit B. Active Networks and Active Virtual Network Manage-
ment Prediction: A Proactive Management Framework, ISBN 0-306-46560-4, Kluwer Aca-
demic/Plenum Publishers. Spring 2001.

[6] Evans, S. C., Bush, S. F., and Hershey, J., “Information Assurance through Kolmogorov
Complexity”, DARPA Information Survivability Conference & Exposition II, 2001,
Proceedings Vol 2, pp 322-331.

[7] Evans, S. C. and Bush, S. F. “Symbol Compression Ratio for String Compression and
Estimation of Kolmogorov Complexity”, submitted to 2002 IEEE International Symposium on
Information Theory, to be held June 30 – July 5, 2002.

[8] Bush, S. F. and Evans, S. C. “Complexity-based Information Assurance,” General Electric
Corporate Research and Development Technical Report 2001CRD084, October 2001.

A.B. Kulkarni Detecting Distributed Denial-of-Service Attacks Using 2001CRD176
S.F. Bush Kolmogorov Complexity Metrics December 2001
S.C. Evans

	crd176text.pdf
	Introduction
	Approach
	Complexity Estimates
	Experimental Results
	Summary and Future Work
	Acknowledgments
	References

