
This effort is funded by DARPA ISO contract number F33615-00-C-1629. Accepted for publication at the DARPA
Information Survivability Conference and Exposition II (DISCEX-II 2001) to be held 12-14 June 2001 in Anaheim,
California.

Information Assurance through Kolmogorov Complexity

Scott Evans, Stephen F. Bush, and John Hershey
GE Corporate Research and Development

evans@crd.ge.com

Abstract

 The problem of Information Assurance is approached
from the point of view of Kolmogorov Complexity and
Minimum Message Length criteria. Several theoretical
results are obtained, possible applications are discussed
and a new metric for measuring complexity is introduced.
Utilization of Kolmogorov Complexity like metrics as
conserved parameters to detect abnormal system behavior
is explored. Data and process vulnerabilities are put
forward as two different dimensions of vulnerability that
can be discussed in terms of Kolmogorov Complexity.
Finally, these results are utilized to conduct complexity-
based vulnerability analysis.

1. Introduction

 Information security (or lack thereof) is too often dealt
with after security has been lost. Back doors are opened,
Trojan horses are placed, passwords are guessed and
firewalls are broken down – in general, security is lost as
barriers to hostile attackers are breached and one is put in
the undesirable position of detecting and patching holes.
In fact many holes go undetected. Breaches in other
complex systems that people care about are not handled in
such an inept manner. Thermodynamic systems, for
example, can be assured of their integrity by the pressure,
heat or mass the system contains. Hydrostatic tests can be
performed to ensure that there are no “holes”, and the
general health of the system can be ascertained by
measuring certain parameters. One doesn’t wait, for
example, for all the water to drain out of a heat exchanger
and a rat to come inside to announce that there is a
problem. A problem is identified as soon as the
temperature or pressure drops and immediately one can
take action to both correct the problem and to isolate other
areas of the system from harm. But does one perform a
hydrostatic test of an information system? What
conserved parameters exist to measure the health or
vulnerability of the system? How can one couple the
daunting task of providing a system where vulnerabilities
are readily measurable with the required need for
simplicity of use for authorized users? This paper

explores these issues and proposes that only through
monitoring objective quantities inherently related to
information itself can the science of information
assurance move beyond patching holes.
 Kolmogorov Complexity is proposed as a fundamental
property of information that has properties of
conservation that may be exploited to provide information
assurance. In this paper, Kolmogorov Complexity is
reviewed and current work in this area explored for
possible applications in providing information assurance.
The concept of Minimum Message Length is explored
and applied to information assurance, yielding examples
of possible benefits for system optimization as well as
security that can be achieved through the use of
Kolmogorov Complexity based ideas. Finally,
complexity based vulnerability analysis is demonstrated
through simulation.

2. Background

 Currently information security is achieved through the
use of multiple techniques to prevent unauthorized use.
Encryption, authentication/password protection, and
policies all provide some level of security against
unauthorized use. But other than simply relying on these
secure barriers, how does one measure the health of their
security system. If a password or encryption key is
compromised, what indication will be available? The
degree to which a system is compromised is difficult to
ascertain. For example, if one password has been
guessed, or two encryption keys determined, how secure
is the information system? Are all detectable security
issues equal, or are some more important than others?
These difficulties reflect the fact that there is no objective,
fundamental set of parameters that can be evaluated to
determine if security is maintained. Insecurity may not be
detected until an absurd result (rat in a tank) discloses the
presence of an attacker. An inherent property of
information itself is desired that can be monitored to
ensure the security of an information system. The
descriptive complexity of the information itself – the
Kolmogorov complexity is a strong candidate for this
purpose. Kolmogorov Complexity is reviewed in the
following section.

2

2.1. Kolmogorov Complexity

 Kolmogorov Complexity is a measure of descriptive
complexity contained in an object. It refers to the
minimum length of a program such that a universal
computer can generate a specific sequence. A good
introduction to Kolmogorov Complexity is contained in
[3] with a solid treatment in [4]. Kolmogorov Complexity
is related to Shannon entropy, in that the expected value
of K(x) for a random sequence is approximately the
entropy of the source distribution for the process
generating the sequence [3]. However, Kolmogorov
Complexity differs from entropy in that it relates to the
specific string being considered rather than the source
distribution. Kolmogorov Complexity can be described
as follows, where ϕ represents a universal computer, p
represents a program, and x represents a string:

{ })(min)(
)(

plxK
xp =

=
ϕϕ

 .

Random strings have rather high Kolmogorov Complexity
– on the order of their length, as patterns cannot be
discerned to reduce the size of a program generating such
a string. On the other hand, strings with a large amount of
structure have fairly low complexity. Universal
computers can be equated through programs of constant
length, thus a mapping can be made between universal
computers of different types, and the Kolmogorov
Complexity of a given string on two computers differs by
known or determinable constants. The Kolmogorov
Complexity K(y|x) of a string y given string x as input is
described by the equation below:

�
�
�

�
�
�

=∞
= =

yxpthatsuchpnoisthereif

pl
xyK yxp

),(,

)(min
)|(),(

ϕ
ϕ

ϕ
 ,

where l(p) represents program length p and ϕ is a
particular universal computer under consideration. Thus,
knowledge or input of a string x may reduce the
complexity or program size necessary to produce a new
string y.
 The major difficulty with Kolmogorov Complexity is
that you can’t compute it. Any program that produces a
given string is an upper bound on the Kolmogorov
Complexity for this string, but you can’t compute the
lower bound [4]. A best estimate of Kolmogorov
Complexity may be useful in determining and providing
information assurance due to links between Kolmogorov
Complexity and information security that will be
discussed later. Various estimates have been considered,
including compressibility, or pseudo-randomness, which

measure the degree to which strings have patterns or
structure. A new metric that is related to the power
spectral density of the sequence auto-correlation is
introduced in Section 4. However, all metrics are at best
crude estimates. The inability to compute Kolmogorov
Complexity persists as the major impediment to
widespread utilization.
 Despite the problems with measurement, Kolmogorov
Complexity and information assurance are related in
many ways. Cryptography, for example attempts to take
strings that have structure and make them appear random.
The quality of a cryptographic system is related to the
systems ability to raise the apparent complexity of the
string, an idea discussed in detail later, while keeping the
actual complexity of the string relatively the same (within
the bounds of the encryption algorithm). In other words,
cryptography achieves its purpose by making a string
appear to have a high Kolmogorov Complexity through
the use of a difficult or impossible to guess algorithm or
key.
 Security vulnerabilities may also be analyzed from the
viewpoint of Kolmogorov Complexity. One can even
relate insecurity fundamentally to the incomputibility of
Kolmogorov Complexity and show why security
vulnerabilities exist in a network. Vulnerabilities can be
thought of as the identification of methods to accomplish
tasks on an information system that are easier than
intended by the system designer. Essentially the designer
intends for something to be hard for an unauthorized user
and the attacker identifies an easier way of accomplishing
this task. Measuring and keeping track of a metric for
Kolmogorov Complexity in an information system
provides a method to detect such short-circuiting of the
intended process.

2.2. Minimum Message Length Principle

 Since it is not computable, few applications exist for
Kolmogorov Complexity. One growing application is a
statistical technique with strong links to information
theory known as Minimum Message Length (MML)
coding [8]. MML coding encodes information as a
hypothesis that identifies the presumptive distribution,
from which data originated, appended with a string of
data, coded in an optimal way. The length of an MML
message is determined as follows:

#M = #H + #D,

where #M is the message length, #H is the length of the
specification of the hypothesis regarding the data, and #D
is the length of the data, encoded in an optimal manner
given hypothesis H. As discussed in [8], MML coding
approaches the Kolmogorov Complexity or actual bound
on the minimum length required for representing a string
of data.

3

3. Conserved Variables

 Conserved variables enable one to deduce parameters
from the presence or absence of other parameters. The
Law of Conservation of Matter and Energy [1] for
example allows one to deduce how well a thermodynamic
system is functioning without knowing every parameter in
the system. Heat gain in one part of the system was either
produced by some process or traveled from (and was lost
from) another part of the system. One knows that if the
thermal efficiency of a thermodynamic system falls below
certain thresholds then there is problem. On the other
hand, if more heat is produced by a system than expected,
some unintended process is at work. A similar situation is
desirable for information systems – the ability to detect
lack of assurance by the presence of something
unexpected, or the absence of something that is expected.
This seems to be far from reach, given that information is
easily created and destroyed with little residual evidence
or impact.
 One possible candidate for a conserved variable in an
information system is Kolmogorov Complexity. Suppose
you could easily know the exact Kolmogorov Complexity
K(S) of a string of data S. You would essentially have a
conserved parameter that could be used to detect, resolve
or infer events that occur in the system, just as tracking
heat in a thermodynamic system enables monitoring of
that system. Operations that affect string S and cause it to
gain or lose complexity can be accounted for, and an
expected change in complexity should be resolvable with
the known (secured) operations occurring in the
information system to produce expected changes in
complexity. Complexity changes that occur in a system
that cannot be accounted for by known system operations
are indications of unauthorized processes taking place.
Thus, in the ideal case where Kolmogorov Complexity is
known, a check and balance on an information system
that enables assurance of proper operation and detection
of unauthorized activity is possible. Unfortunately (as
previously discussed) a precise measure of Kolmogorov
Complexity is not computable. We can, however, bound
the increase in Kolmogorov Complexity as shown in the
theorems below.

3.1. Theorems of Conservation

 Kolmogorov Complexity, K(x), can be thought of as a
conserved parameter that changes through computational
operations conducted upon strings. In order for K(x) to be
a conserved parameter one must account for changes in
K(x). Two theorems are presented below that enable
bounds to be placed on the changes in K(x) that occur due
to computational operations occurring in an information
system. The two theorems below show bounds on the
amount of complexity that can exist due to knowledge of
other strings or computational operations.

3.1.1. Theorem 1: Bound on Conditional Complexity

)()|(yKxyK ϕϕ ≤

Proof
 Since K(y) is the minimal length program that produces
string y with no input, input x can only reduce the length
of the program required to produce y. At worst, x can be
ignored completely, in which case K(y|x)=K(y).
However, knowing x may reduce the program to produce
y, depending on the extent that string x contributes
towards generating string y or enables a more efficient
generation of y. QED

3.1.2. Theorem 2: Bound on Complexity Increase Due
to Computational Operation

)()(),|(pLxKpxyK +≤ ϕϕ

Proof
Program p of length L(p) takes input string x to produce
output string y. Proof by contradiction: consider a
program p that could be run on input string x to produce
string y. Assume that the complexity of y = K(y|x,p) >
K(x) + L(p). But one could produce string y by first
forming string x with program of length K(x), then
running program p of length L(p), thus producing y with a
program of length K(x) + L(p). But this violates the
definition of Kolmogorov Complexity as being the
minimum length program, since a program of smaller
length has been found. Thus the assumption is false and
K(y|x,p) must be <= K(x) + L(p). QED

3.3. Conservation of Complexity

 As shown above, while not computable from below,
upper bounds on the increase in Kolmogorov Complexity
can be crudely known by keeping track of the size of
programs that affect data. This bound may be incredibly
loose, as it is quite possible to operate on a string and
make it much less complex than the input. One would
need a method to recognize this simplification. However,
these results provide an intuitively attractive method for
quantifying the “work” performed by a computational
operation on information – the change in complexity
introduced by the operation. A thorough treatment of
bounds related to K(y|x) and the “Information Distance”
between strings is contained in Bennett et al.[9].

4. A Measure for Binary String Complexity

 As previously discussed, due to its non-computable
nature, estimates of K(x) are difficult. Numerous

4

techniques for estimating K(x) are discussed in [4]. The
task of estimating K(x) is related to the task of assessing
string structure. A new primitive approach to this related
issue is introduced based on the power spectral density of
a string’s auto-correlation. This approach highlights the
ability to gain knowledge of K(x) without any higher
knowledge about the system producing string x or the
meaning of the information.
 Recognizing that the complexity of a binary string may
be defined in many ways. A useful complexity measure
may be related to properties of the string’s non-cyclic
auto-correlation. Specifically, given an n-bit binary
string, S, where:

niisS <≤= 0)},({ ,

 and

iis ∀±∋ }1{)(.

Define the non-cyclic auto-correlation, R, as:

niirR <≤= 0)},({

where

�
−−

=

+=
1

0

)()()(
in

j

jisjsir

.

 From R, calculate the sequence’s non-negative power
spectral density, Φi, by multiplying the Fourier transform
of R by its conjugate. The measure for binary string
complexity that is formed is denoted by Ψ and is defined
as

� ΦΦ=Ψ
i

iifactornorm log.
1

.

 The motivation to this approach is found in the rich and
venerable field of synchronization sequence design.
Sequences that have an auto-correlation who’s side-lobes
are of very low magnitude provide good defense against
ambiguity in time localization. Such an auto-correlation
function will approximate a “thumbtack” and its Fourier
transform will approximate that of band-limited white
noise.
 The authors of this paper expect that Ψ will be of utility
in assessing complexity as it relates to the compressibility
of a binary string. To begin the testing of this hypothesis,
strings are generated from the Markov process
diagrammed in Figure 1. A series of binary sequences of
8000 bits were generated, each for different values of p. Ψ

was computed for each of these strings and also packed
into 1000-kilobyte files. These were subjected to the
UNIX compress routine. The Inverse Compression Ratio
(ICR) was computed which is the size of the compressed
file normalized to its uncompressed size, 1000 kilobytes
in these cases.

-1+1

p

p

1-p 1-p

Figure 1. Markov model for string generation.

 The hypothesis is that Ψ and the ICR should vary in a
similar manner and that Ψ might be a useful measure of
sequence compressibility and hence complexity. The
graph in Figure 2 seems to endorse this hypothesis and
further research is motivated.

Psi & ICR Versus p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Psi
ICR

Figure 2. Variation of Psi and ICR with p.

 The above results show that fundamental parameters
such as power spectral density of sequence auto-
correlation and compressibility are related and follow
similar trends. These fundamental metrics are possible
candidates for measuring trend of increase or decrease in
K(x). However, also illustrated by these results (the
unequal rate of change between the two metrics) are the
loose bounds within which estimates of K(x) are related.
Other methods of estimating K(x) are described in [4]. In
the next section we introduce a method for attacking the
issue of loose bounds in order to make complexity metrics
useful for the purposes of assessing and providing
information assurance.

5

5. Apparent Complexity

 The results in Section 3 give an upper bound on
complexity increase due to computational operations, but
perhaps one can do better. In fact, the size of the shortest
program one can find to produce a particular string is the
best estimate for K(S). Since Kolmogorov Complexity is
unknowable, the best that we can do is estimate well.
This motivates the idea of apparent complexity: the best
attainable estimate of K(S) given the limited information
available to a particular party. The benefit or possible
way to exploit the idea of apparent complexity is that a
user generating a string should have the best idea of how
hard it is to generate the string. There are many reasons
why a user may not choose to generate a string using the
minimal size program. Perhaps a longer program can
execute faster, or perhaps the generator is unknowingly
using an inefficient process. However, the generator of a
string of data is presumed to have knowledge of the
process used to generate that data. This may in fact make
the non-computability of Kolmogorov Complexity an
asset: a good candidate for use in providing information
assurance, for the follow reason. The information system
designer or an authorized user generating data should
have better knowledge of the data process than an
attacker. An attacker cannot simply compute the optimal
process. Additionally, conservation of apparent
complexity enables abnormalities to be tracked when the
expected number of computational operations is not
utilized in transforming string x into string y. Thus, even
if one cannot know or compute the most efficient process
for creating a string of data, one can at least gain benefit
from ensuring through monitoring resources that the
expected process is used. This type of assurance has in
fact been used informally to detect network security
problems for many years. Discrepancies in computer
account charges have lead to detection of attack [10]. The
idea of using Kolmogorov Complexity provides the
possibility of using this type of technique on a more
fundamental level where knowledge about the
information content would not be required to determine
unauthorized activity. The term apparent complexity will
be used to reflect the best measurement of Kolmogorov
complexity available to the party undertaking the
measurement.

5.1 Process vs. Data Complexity

 Apparent complexity can be applied to the problem of
information assurance in two ways. As discussed above,
conservation of apparent complexity may enable detecting
and correcting abnormal behavior. Another method of
using apparent complexity for information assurance is in
the identification of weak areas or vulnerabilities in the
system. Consider the postulate that the more apparently
complex the data, the more difficult for an attacker to

understand the data and exploit the system. Thus, the
more apparently complex, the less vulnerable and vice
versa. One proposed metric for vulnerability relates to
evaluating the apparent complexity of the concatenated
input and output K(X.Y). This relates to the joint
complexity of the data input and output from a certain
process (Black Box). The lower the complexity of
K(X.Y) the easier the data is for an attacker to understand,
thus we will regard K(X.Y) as a measure of data
vulnerability. A competing metric is the relative
complexity K(Y|X) of the process. This is the “work”
done on the information by the process, or the complexity
added to or removed from X to produce Y. Thus K(Y|X)
is a measure of process vulnerability. The relationships
between these respective complexity metrics and the
black box process is shown in Figure 3.

Figure 3. Process vs. data vulnerabilities.

 Data vulnerability relates to how vulnerable a system is
to an attacker knowing information. This type is perhaps
best measured by K(X.Y), where the cumulative
complexity of input and output data is observed to
measure the difficulty an attacker would face in
decrypting or identifying messages contained in input and
output. For example, hopefully K(encrypted message)
appears >> K(decrypted message) to the casual observer
and is only recognized to be on the order of K(decrypted
message) to an authorized user with the correct key after
the decryption algorithm has been run.
 Process vulnerability relates a system’s susceptibility to
an attacker understanding the processes that manipulate
information. This vulnerability is best quantified by the

6

complexity injected or removed from the data by the
process at work. For example, a copy or pass-through
process adds little complexity, K(Y|X) is zero. But if
encrypted data is sent through the copy process, K(X.Y)
will be high. The attacker will be unable to discern the
messages that are sent, but can learn to perhaps simulate
this particular black box quite effectively. Whereas if
plain text data is sent through the copy process K(X.Y)
will be low, and in addition to understanding the process
at work, and attacker may be able to know the particular
messages that are sent. Both vulnerabilities are
undesirable and represent two different dimensions of
vulnerability to be avoided. To make systems secure one
must maximize both process and data complexity to a
non-authorized user while keeping the systems simple to
authorized users. Proper accounting of K(Y|X) and
K(X.Y) throughout the system will enable both
identification of weak areas as well as identification of
foul play through the conservation principles discussed
earlier.

6. Vulnerability Reduction by means of
System Optimization

 In this section issues related to system optimization that
can be achieved through Kolmogorov Complexity and
various related tradeoffs are discussed. Compression and
security are strongly linked in that they are bounded
optimally by the most random sequence that can be
produced. But smallest program size is not the only or
even most important performance metric. Execution time
is and example of another metric that must be considered.
The tradeoff is indicated in Figure 4, where the possibility
of having programs with large K(X) and small execution
time and vice versa are highlighted.

Solution Space Tradeoff

K(x)

T(x)

Small Program,
Long Execution Time

Long Program,
Small Execution Time

Figure 4. Program size vs. speed tradeoffs.

 Through the use of active network techniques [11] the
tradeoff indicated may be dynamically addressed using a
concept called Active Packet Morphing for network

optimization. As shown in Figure 5, changing the form of
information from data to code as information flows
through a system can optimize CPU resources and
bandwidth resources.

Active Morphing for Network Optimization

Generating Node
(Node 1)

Active Packet
Data Code

Bandwidth Constrained Channel

High CPU
Network Node
(Node 2)

Active Packet
Data Code

Active Packet
Data Code

Low CPU
Destination
Network Node
(Node 3)

High Bandwidth Channel

Very High CPU
Network Node
(Node 5)

High CPU
Network Node
(Node 4)

Bandwidth Constrained Channel

Active Packet
Code

Very Bandwidth Constrained Channel

Figure 5. Active packet morphing for network
optimization.

 This idea can be extended to optimize or prevent
adverse effects from critical resources in addition to
bandwidth and CPU. Memory, time of execution or
buffer space could be use to trade off forms of data
representation to optimize certain system parameters. The
ability of data to change form within a system opens up
multiple optimization paths that were previously invariant
in the system. Rigorous security quantification resulting
from this work allows active packets to morph by adding
the required security overhead along specific
communication links such that the security of the link
along with the security of the morphed packet yield the
proper level of security required by a given policy. Thus,
security overhead is minimized.
 Another parameter that can optimize system resources is
the knowledge of how a piece of data is used. MP3 audio
is a good example of how leaving out information
(specifically that which is undetectable by the human ear)
can optimize data size. We introduce here the idea of
“necessary” data to augment the idea of “sufficient” data
or sufficient statistics that represent all information
contained in the original data [3]. Sufficient
representation of data contains all the information that the
source data contains. Necessary data contains only the
information that the source data contains that the
destination instrument can effectively use. If one
efficiently encapsulates all the information in source data
in a statistical parameter one may have achieved a
minimum sufficient statistic. If one further reduces this
statistic such that one encapsulates only the information
that is usable by the end node, one has obtained the
minimal necessary sufficient statistic. Thus, Kolmogorov

7

Complexity related ideas have tremendous impact for
system optimization as well as security.

7. Automated Discovery of Vulnerabilities
without a priori Knowledge of Vulnerability
Types

 An information system can be designed in such a manner
that the apparent complexity of the system under attack
can be determined with respect to the attacker and that
information used to maximize the distance in the apparent
complexity between the attacker and defenders in an
automatically reconstituted system. An Active Network
[11] is an ideal environment in which to experiment with
an implementation of automated system reconstitution
because it provides extreme flexibility in fine-grain code
movement and composition of code. Apparent complexity
is used to reconstitute the system such that the complexity
difference is maximized between legitimate users and
attackers of the system. In this section, the discussion is
limited to the automated hardening of a system based
upon information about an attacker and a new form of
vulnerability analysis, called complexity-based
vulnerability analysis.
 The motivation for complexity-based vulnerability
analysis comes from the fact that vulnerability analysis
tools today require types of vulnerabilities to be known a
priori. This is unacceptable, but understandable given the
challenge of finding all potential vulnerabilities in a
system. Information assurance is a hard problem in part
because it involves the application of the scientific
method by a defender to determine a means of evaluating
and thwarting the scientific method applied by an
attacker. This self-reference of scientific methods would
seem to imply a non-halting cycle of hypotheses and
experimental validation being applied by both offensive
and defensive entities. Information assurance depends
upon the ability to discover the relationships governing
this cycle and then quantifying and measuring the
progress made by both an attacker and defender. This
work attempts to lay the foundation for quantifying
information assurance.
 Quantification is necessary because tools have been
developed to measure and analyze security assuming
rigorously defined security metrics exist. See [12] for an
example of such a tool whose sample vulnerability chain
output is shown in Figure 6. The numbers shown in
Figure 6 are opportunities for an attacker to move across
vulnerabilities. More precisely, tools such as these rely on
an “insecurity flow” metric. However, a rigorously
defined metric has not yet been derived. One focus of this
paper is upon mathematically quantifying and refining
insecurity flows. It is extremely important that a proper
metric space is chosen, because the entire foundation of
Information Assurance will rest upon this space.
Particularly notable is the fact that relationships involving

physics of information are being developed whose
operations will be facilitated by the choice of metric.

Figure 6. Vulnerability results from an analysis
tool.

 Any vulnerability analysis technique for information
assurance must account for the innovation of an attacker.
Such a metric was suggested about 700 years ago by
William of Ockham [13]. Ockham’s Razor has been the
basis of much of this paper and the complexity-based
vulnerability method to be presented. The salient point of
Ockham’s Razor and complexity-based vulnerability
analysis is that the better one understands a phenomenon,
the more concisely the phenomenon can be described.
This is the essence of the goal of science: to develop
theories that require a minimal amount of irrelevant
information, all the knowledge required to describe a
phenomenon should be algorithmically contained in
formulae.

7.1 Mozart and Vulnerability Analysis

 Science is art and art is science. One of the most
mathematical of art forms is the composition of music.
Music is compressed and transported over the Internet
very frequently and most listeners of such music probably
have little interest in the compression ratio of a particular
piece of music. However, this piece of information can be
very interesting and informative with regard to the
complexity of a piece of music. One would expect an
incompressible piece of music to be highly complex;
perhaps bordering on random noise; while a highly
compressible piece of music would have a very simple
repetitive nature. Most people would probably prefer
music that falls in a mid-level range of complexity;
sounds that are not repetitious and boring yet not random
and annoying, but follow an internal pattern in the
listeners’ minds. Music is a mathematical sequence that
the composer is posing to the listener; the more easily the
listener can extrapolate the sequence without being too
challenged or too bored the more pleasing the music
sounds. Carrying the music analogy forward in a more

8

explicit manner, consider the listener as an attacker and
the composer as the designer of an information system. If
a user has a preference for a given type of music, a sample
of that music can be included as a hypothesis in an MML-
based complexity analysis. The lower the complexity, the
more appealing the music to that particular listener. The
more easily the listener can extrapolate the musical
sequence, the more vulnerable the system.
 Imagine the composer who wishes his music to be
enjoyed by only a specific group of listeners and no
others. The composer is constrained from generating a
completely invulnerable system, that is, totally random,
because the composer wants the music to be meaningful
to at least some potential group of listeners. Relating this
analogy to the hydrostatic test that was mentioned in the
introduction to this paper, vulnerability is the
quantification of the potential leakage of music that is
enjoyable to unintended listeners.
 In a very quick experiment, the following three pieces
of music were tested for complexity: Beethoven's Sonata
Op. 27, No. 2 ("Moonlight"), Mozart's Sonata in A Major
("Alla Turka"), and Philip Glass's Opening to
"Glassworks". The encoding explicitly represents notes,
timing, dynamics, and phrasing. Beethoven's Moonlight
Sonata has a complexity rating of 0.13, Mozart's Sonata
has a complexity rating of 0.16, and Glass’s Introduction
to Glassworks has a complexity of 0.03 based upon then
inverse compression ratio. Philip Glass makes extreme
use of repetitious arpeggios in his work, thus the low
complexity rating. One of the authors expected Beethoven
to have a slightly higher complexity than Mozart by a
small amount, but it was the reverse in this case. Note that
one could decompose the overall complexity to determine
the complexity of a composer’s use of rhythm, note
structure, phrasing, or other musical components. Once a
composer’s typical complexity band is benchmarked; this
type of analysis could be used as an indicator to determine
authenticity. Additionally, one could conjecture that
“learning” to model Beethoven or Mozart might be more
difficult than other composers.

7.2 Demonstration of Complexity-based Vulnerability
Analysis

 Experimental validation of complexity-based
vulnerability analysis has begun using a model
information system that has been implemented in
Mathematica. The goal is to determine the vulnerability,
not only of the overall system, but also of system
components. Vulnerability analysis should be done
without any a priori knowledge about system operation or
knowledge of particular types of vulnerabilities. Relating
this mechanism to the hydrostatic testing mentioned in the
introduction to this paper, one does not have to
understand the motion and dynamics of every molecule in

order to determine a leak. Expert systems and
vulnerability analysis tools that rely upon rules identifying
particular types of vulnerabilities, in other words,
attempting to understand every intricate detail of a system
and its vulnerabilities, are inherently brittle and, in fact,
meaningless against an innovative attacker. Thus, the
Mathematica information system model shown in Figure
7 purposely does not include component descriptions or
explanations because the goal is to analyze the system as
a black box with respect to vulnerability. The point is that
vulnerability analysis can be done without having to know
the details of the system. At the end of this section, the
functions of the analyzed components are mentioned. It
should then make intuitive sense that a particular
component that was performing a simple operation had a
lower complexity than one performing a more complex
operation.

Figure 7. Mathematica System Model
Components.

 Each component of the Mathematica information system
contains probe points through which bit level input and
output can be collected. A complexity function based
upon a simple inverse compression ratio is used as an
estimate of complexity. The intent is to experiment with
better complexity measures as this project continues.
Figures 8, 9, and 10 show results from complexity
measures taken of accumulated input and output of three
separate components of the information system. The

9

graphs show the complexity of bit-level input and output
strings concatenated together. That is, observe an input
sequence at the bit-level and concatenate with an output
sequence at the bit-level. This input/output concatenation
is for either the entire system or for components of the
system. If there is low complexity in the input/output
observations, then it is likely to be easy for an attacker to
understand that component of the system. Note that these
graphs are showing estimates of Kolmogorov Complexity.
If MML were used, the attacker's hypothesis would be
used to determine the complexity relative to a particular
attacker. In Figures 8, 9, and 10, the X-axis is the number
of input and output observations concatenated to form a
single string of bits. The particular complexity estimate
used in this example is very poor; however, an ongoing
area of research is to improve complexity estimates.
Because of the inaccurate complexity metric, all the
figures show a rising complexity with the number of
accumulated observations. However, notice the rate at
which the complexity rises in each of the figures. It would
appear that Component E is most vulnerable due to its
low rate of increase in complexity while Component B
appears to be the least vulnerable due to its steeper rise in
complexity. These results make intuitive sense because
Component B is simply transmitting data without any
form of protection while Component B is adding noise to
the data. This vulnerability method does not take into
account whether a component reduced or increased
complexity; in other words whether the change was
endothermic or exothermic complexity behavior. This
project will extend this analysis with further work
utilizing information distance as a vulnerability analysis
technique.

Number of Accumulated Observations Vs Complexity Metric

5 10 15 20

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Figure 8. Complexity-Based vulnerability
analysis of component C.

Number of Accumulated Observations Vs Complexity Metric

5 10 15 20

0.97

0.98

0.99

Figure 9. Complexity-Based Analysis of
Component B.

Number of Accumulated Observations Vs Complexity
Metric

5 10 15 20

0.86

0.88

0.92

0.94

0.96

0.98

Figure 10. Complexity-Based Vulnerability
Analysis of Component E.

These results show that vulnerabilities can be systemically
discovered. When used in an MML approach to
complexity measurement, apparent complexity, that is,
complexity as seen by a particular attacker can be
determined. Thus, this work has led towards automatic
generation of vulnerabilities in graphical form similar to
Figure , but without requiring expert knowledge of each
type of vulnerability and in a more complete manner,
depending upon the number of components analyzed.
Note that all possible combination of components must be
analyzed in this manner. Design of a general-purpose
automated tool that can perform this type of vulnerability
analysis is under construction.

10

8. Conclusions

 Fundamental properties of information must be utilized
to move the study of information assurance to a proactive
versus reactive level. This work has identified the
inherent property of Kolmogorov Complexity as a
possible parameter for this task. Numerous opportunities
exist for exploiting Kolmogorov Complexity to achieve
security and network optimization. Two possible
opportunities that were explored in this paper were
utilization of Kolmogorov Complexity like metrics as
conserved parameters to detect abnormal system behavior
and Complexity-based vulnerability analysis. This paper
has distinguished between data and process
vulnerabilities, both of which can be systemically
discovered without a priori knowledge of vulnerability
types. When used in an MML approach to complexity
measurement, apparent complexity, that is, complexity as
seen by a particular attacker can be determined. This work
leads towards automatic generation of vulnerabilities
through multiple vulnerability chains without requiring
expert knowledge of each type of vulnerability. Further
research is necessary to develop suitable metrics and
applications for these ideas to bear fruit.

9. Acknowledgements

This effort is funded by DARPA ISO contract number
F33615-00-C-1629.

10. References

[1] Giancoli, Douglas C. General Physics, Prentice Hall, INC,
Englewood Cliffs, NJ.
[2] Fraundorf, P. “Heat Capacity in Bits,” April 28, 2000,
Downloaded from URL
http://www.umsl.edu/~fraundor/ifzx/cvinbits.html. An active
revision of cond-mat/9711074 in the Los Alamos archives
[3] Cover, T. M. and Thomas, J. A. Elements of Information
Theory. Wiley, NY, 1991.
[4] Li, Ming and Vitányi, Paul An Introduction to Kolmogorov
Complexity and Its Applications, Springer, NY 1997
[5] Rolf Herken, ed. The Universal Turing Machine, A Half-
Century Survey. Springer-Verlag, NY, 1995
[6] Denning, Elizabeth R, Cryptography and Data Security,
Addison-Wesley, Mass, 1982.
[7] D. Eastlake, J. Schiller, S. Crocker “Randomness
Requirements for Security”, Internet draft, 30-Nov-00
[8] “Minimum Message Length and Kolmogorov Complexity,”
Wallace, C. S. and Dowe, D. L., The Computer Journal, Vol.
42, No 4. 1999.
[9] C. Bennett, P. Gacs, M. Li, P. Vitanyi, and W. Zurek,
“Information Distance,” IEEE Transactions on Information
Theory, Vol 44, July, 1998.
[10] D. Denning, P. Denning, Internet Besieged, Addison
Wesley, Mass, 1998.

[11] Bush, Stephen F. and Kulkarni, Amit B. Active Networks
and Active Virtual Network Management Prediction: A
Proactive Management Framework. ISBN 0-306-46560-4.
Kluwer Academic/Plenum Publishers. Spring 2001.
[12] Bush, Stephen F. and Barnett, Bruce. A Security
Vulnerability Technique and Model. GE Corporate Research and
Development, January 1998. Technical Report 98CRD028.
[13] W. Kirchher, M. Li, and P. Vitanyi. The Miraculous
Universal Distribution. The Mathematical Intelligencer,
Springer-Verlag, New York, Vol. 19, No. 4, 1997.

