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Abstract 
 
  The problem of Information Assurance is approached 
from the point of view of Kolmogorov Complexity and 
Minimum Message Length criteria.  Several theoretical 
results are obtained, possible applications are discussed 
and a new metric for measuring complexity is introduced. 
Utilization of Kolmogorov Complexity like metrics as 
conserved parameters to detect abnormal system behavior 
is explored. Data and process vulnerabilities are put 
forward as two different dimensions of vulnerability that 
can be discussed in terms of Kolmogorov Complexity.  
Finally, these results are utilized to conduct complexity-
based vulnerability analysis. 
 

1.  Introduction 
   
    Information security (or lack thereof) is too often dealt 
with after security has been lost.  Back doors are opened, 
Trojan horses are placed, passwords are guessed and 
firewalls are broken down – in general, security is lost as 
barriers to hostile attackers are breached and one is put in 
the undesirable position of detecting and patching holes.  
In fact many holes go undetected.  Breaches in other 
complex systems that people care about are not handled in 
such an inept manner.  Thermodynamic systems, for 
example, can be assured of their integrity by the pressure, 
heat or mass the system contains.  Hydrostatic tests can be 
performed to ensure that there are no “holes”, and the 
general health of the system can be ascertained by 
measuring certain parameters.  One doesn’t wait, for 
example, for all the water to drain out of a heat exchanger 
and a rat to come inside to announce that there is a 
problem.  A problem is identified as soon as the 
temperature or pressure drops and immediately one can 
take action to both correct the problem and to isolate other 
areas of the system from harm.  But does one perform a 
hydrostatic test of an information system?  What 
conserved parameters exist to measure the health or 
vulnerability of the system? How can one couple the 
daunting task of providing a system where vulnerabilities 
are readily measurable with the required need for 
simplicity of use for authorized users?  This paper 

explores these issues and proposes that only through 
monitoring objective quantities inherently related to 
information itself can the science of information 
assurance move beyond patching holes. 
     Kolmogorov Complexity is proposed as a fundamental 
property of information that has properties of 
conservation that may be exploited to provide information 
assurance.  In this paper, Kolmogorov Complexity is 
reviewed and current work in this area explored for 
possible applications in providing information assurance.  
The concept of Minimum Message Length is explored 
and applied to information assurance, yielding examples 
of possible benefits for system optimization as well as 
security that can be achieved through the use of 
Kolmogorov Complexity based ideas.  Finally, 
complexity based vulnerability analysis is demonstrated 
through simulation. 

2. Background 
 
  Currently information security is achieved through the 
use of multiple techniques to prevent unauthorized use.  
Encryption, authentication/password protection, and 
policies all provide some level of security against 
unauthorized use.  But other than simply relying on these 
secure barriers, how does one measure the health of their 
security system.  If a password or encryption key is 
compromised, what indication will be available? The 
degree to which a system is compromised is difficult to 
ascertain.  For example, if one password has been 
guessed, or two encryption keys determined, how secure 
is the information system?  Are all detectable security 
issues equal, or are some more important than others?  
These difficulties reflect the fact that there is no objective, 
fundamental set of parameters that can be evaluated to 
determine if security is maintained.  Insecurity may not be 
detected until an absurd result (rat in a tank) discloses the 
presence of an attacker. An inherent property of 
information itself is desired that can be monitored to 
ensure the security of an information system.  The 
descriptive complexity of the information itself – the 
Kolmogorov complexity is a strong candidate for this 
purpose.  Kolmogorov Complexity is reviewed in the 
following section.  
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2.1. Kolmogorov Complexity 
 
  Kolmogorov Complexity is a measure of descriptive 
complexity contained in an object. It refers to the 
minimum length of a program such that a universal 
computer can generate a specific sequence.  A good 
introduction to Kolmogorov Complexity is contained in  
[3] with a solid treatment in [4]. Kolmogorov Complexity 
is related to Shannon entropy, in that the expected value 
of K(x) for a random sequence is approximately the 
entropy of the source distribution for the process 
generating the sequence [3]. However, Kolmogorov 
Complexity differs from entropy in that it relates to the 
specific string being considered rather than the source 
distribution.  Kolmogorov Complexity can be described 
as follows, where ϕ represents a universal computer, p 
represents a program, and x represents a string:  
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Random strings have rather high Kolmogorov Complexity 
– on the order of their length, as patterns cannot be 
discerned to reduce the size of a program generating such 
a string.  On the other hand, strings with a large amount of 
structure have fairly low complexity.  Universal 
computers can be equated through programs of constant 
length, thus a mapping can be made between universal 
computers of different types, and the Kolmogorov 
Complexity of a given string on two computers differs by 
known or determinable constants.  The Kolmogorov 
Complexity K(y|x) of a string y given string x as input is 
described by the equation below: 
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where l(p) represents program length p and ϕ is a 
particular universal computer under consideration.  Thus, 
knowledge or input of a string x may reduce the 
complexity or program size necessary to produce a new 
string y. 
   The major difficulty with Kolmogorov Complexity is 
that you can’t compute it.  Any program that produces a 
given string is an upper bound on the Kolmogorov 
Complexity for this string, but you can’t compute the 
lower bound [4]. A best estimate of Kolmogorov 
Complexity may be useful in determining and providing 
information assurance due to links between Kolmogorov 
Complexity and information security that will be 
discussed later.  Various estimates have been considered, 
including compressibility, or pseudo-randomness, which 

measure the degree to which strings have patterns or 
structure. A new metric that is related to the power 
spectral density of the sequence auto-correlation is 
introduced in Section 4.  However, all metrics are at best 
crude estimates.  The inability to compute Kolmogorov 
Complexity persists as the major impediment to 
widespread utilization.  
   Despite the problems with measurement, Kolmogorov 
Complexity and information assurance are related in 
many ways.  Cryptography, for example attempts to take 
strings that have structure and make them appear random.  
The quality of a cryptographic system is related to the 
systems ability to raise the apparent complexity of the 
string, an idea discussed in detail later, while keeping the 
actual complexity of the string relatively the same (within 
the bounds of the encryption algorithm).  In other words, 
cryptography achieves its purpose by making a string 
appear to have a high Kolmogorov Complexity through 
the use of a difficult or impossible to guess algorithm or 
key.   
   Security vulnerabilities may also be analyzed from the 
viewpoint of Kolmogorov Complexity.  One can even 
relate insecurity fundamentally to the incomputibility of 
Kolmogorov Complexity and show why security 
vulnerabilities exist in a network.  Vulnerabilities can be 
thought of as the identification of methods to accomplish 
tasks on an information system that are easier than 
intended by the system designer.  Essentially the designer 
intends for something to be hard for an unauthorized user 
and the attacker identifies an easier way of accomplishing 
this task.  Measuring and keeping track of a metric for 
Kolmogorov Complexity in an information system 
provides a method to detect such short-circuiting of the 
intended process. 

2.2. Minimum Message Length Principle 
 
  Since it is not computable, few applications exist for 
Kolmogorov Complexity.  One growing application is a 
statistical technique with strong links to information 
theory known as Minimum Message Length (MML) 
coding [8].  MML coding encodes information as a 
hypothesis that identifies the presumptive distribution, 
from which data originated, appended with a string of 
data, coded in an optimal way.  The length of an MML 
message is determined as follows:   

 
#M = #H + #D, 

 
where #M is the message length, #H is the length of the 
specification of the hypothesis regarding the data, and #D 
is the length of the data, encoded in an optimal manner 
given hypothesis H.  As discussed in [8], MML coding 
approaches the Kolmogorov Complexity or actual bound 
on the minimum length required for representing a string 
of data.  
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3. Conserved Variables 
 
  Conserved variables enable one to deduce parameters 
from the presence or absence of other parameters.  The 
Law of Conservation of Matter and Energy [1] for 
example allows one to deduce how well a thermodynamic 
system is functioning without knowing every parameter in 
the system.  Heat gain in one part of the system was either 
produced by some process or traveled from (and was lost 
from) another part of the system.  One knows that if the 
thermal efficiency of a thermodynamic system falls below 
certain thresholds then there is problem.  On the other 
hand, if more heat is produced by a system than expected, 
some unintended process is at work.  A similar situation is 
desirable for information systems – the ability to detect 
lack of assurance by the presence of something 
unexpected, or the absence of something that is expected.  
This seems to be far from reach, given that information is 
easily created and destroyed with little residual evidence 
or impact.     
  One possible candidate for a conserved variable in an 
information system is Kolmogorov Complexity.  Suppose 
you could easily know the exact Kolmogorov Complexity 
K(S) of a string of data S.  You would essentially have a 
conserved parameter that could be used to detect, resolve 
or infer events that occur in the system, just as tracking 
heat in a thermodynamic system enables monitoring of 
that system.  Operations that affect string S and cause it to 
gain or lose complexity can be accounted for, and an 
expected change in complexity should be resolvable with 
the known (secured) operations occurring in the 
information system to produce expected changes in 
complexity.  Complexity changes that occur in a system 
that cannot be accounted for by known system operations 
are indications of unauthorized processes taking place. 
Thus, in the ideal case where Kolmogorov Complexity is 
known, a check and balance on an information system 
that enables assurance of proper operation and detection 
of unauthorized activity is possible.  Unfortunately (as 
previously discussed) a precise measure of Kolmogorov 
Complexity is not computable.  We can, however, bound 
the increase in Kolmogorov Complexity as shown in the 
theorems below. 

3.1. Theorems of Conservation 
 
  Kolmogorov Complexity, K(x), can be thought of as a 
conserved parameter that changes through computational 
operations conducted upon strings.  In order for K(x) to be 
a conserved parameter one must account for changes in 
K(x).  Two theorems are presented below that enable 
bounds to be placed on the changes in K(x) that occur due 
to computational operations occurring in an information 
system.  The two theorems below show bounds on the 
amount of complexity that can exist due to knowledge of 
other strings or computational operations. 

3.1.1. Theorem 1: Bound on Conditional Complexity 
 

)()|( yKxyK ϕϕ ≤  

Proof 
  Since K(y) is the minimal length program that produces 
string y with no input, input x can only reduce the length 
of the program required to produce y.  At worst, x can be 
ignored completely, in which case K(y|x)=K(y).  
However, knowing x may reduce the program to produce 
y, depending on the extent that string x contributes 
towards generating string y or enables a more efficient 
generation of y. QED 

3.1.2. Theorem 2: Bound on Complexity Increase Due 
to Computational Operation 
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Proof 
Program p of length L(p) takes input string x to produce 
output string y.  Proof by contradiction: consider a 
program p that could be run on input string x to produce 
string y.  Assume that the complexity of y = K(y|x,p) > 
K(x) + L(p).  But one could produce string y by first 
forming string x with program of length K(x), then 
running program p of length L(p), thus producing y with a 
program of length K(x) + L(p).  But this violates the 
definition of Kolmogorov Complexity as being the 
minimum length program, since a program of smaller 
length has been found.  Thus the assumption is false and 
K(y|x,p) must be  <= K(x) + L(p).  QED 
 
3.3. Conservation of Complexity 
 
   As shown above, while not computable from below, 
upper bounds on the increase in Kolmogorov Complexity 
can be crudely known by keeping track of the size of 
programs that affect data.   This bound may be incredibly 
loose, as it is quite possible to operate on a string and 
make it much less complex than the input.  One would 
need a method to recognize this simplification. However, 
these results provide an intuitively attractive method for 
quantifying the “work” performed by a computational 
operation on information – the change in complexity 
introduced by the operation. A thorough treatment of 
bounds related to K(y|x) and the “Information Distance” 
between strings is contained in  Bennett et al.[9]. 

4.  A Measure for Binary String Complexity  

 
  As previously discussed, due to its non-computable 
nature, estimates of K(x) are difficult.  Numerous 
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techniques for estimating K(x) are discussed in [4].  The 
task of estimating K(x) is related to the task of assessing 
string structure. A new primitive approach to this related 
issue is introduced based on the power spectral density of 
a string’s auto-correlation.  This approach highlights the 
ability to gain knowledge of K(x) without any higher 
knowledge about the system producing string x or the 
meaning of the information. 
  Recognizing that the complexity of a binary string may 
be defined in many ways. A useful complexity measure 
may be related to properties of the string’s non-cyclic 
auto-correlation.  Specifically, given an n-bit binary 
string, S, where:  
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Define the non-cyclic auto-correlation, R, as: 
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 From R, calculate the sequence’s non-negative power 
spectral density, Φi, by multiplying the Fourier transform 
of R by its conjugate. The measure for binary string 
complexity that is formed is denoted by Ψ and is defined 
as 
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   The motivation to this approach is found in the rich and 
venerable field of synchronization sequence design. 
Sequences that have an auto-correlation who’s side-lobes 
are of very low magnitude provide good defense against 
ambiguity in time localization. Such an auto-correlation 
function will approximate a “thumbtack” and its Fourier 
transform will approximate that of band-limited white 
noise. 
   The authors of this paper expect that Ψ will be of utility 
in assessing complexity as it relates to the compressibility 
of a binary string. To begin the testing of this hypothesis, 
strings are generated from the Markov process 
diagrammed in Figure 1.  A series of binary sequences of 
8000 bits were generated, each for different values of p. Ψ 

was computed for each of these strings and also packed 
into 1000-kilobyte files. These were subjected to the 
UNIX compress routine. The Inverse Compression Ratio 
(ICR) was computed which is the size of the compressed 
file normalized to its uncompressed size, 1000 kilobytes 
in these cases. 
 
 

-1+1

p

p

1-p 1-p

 

Figure 1. Markov model for string generation. 

 
 
  The hypothesis is that Ψ and the ICR should vary in a 
similar manner and that Ψ might be a useful measure of 
sequence compressibility and hence complexity. The 
graph in Figure 2 seems to endorse this hypothesis and 
further research is motivated. 
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Figure 2. Variation of Psi and ICR with p. 

 
  The above results show that fundamental parameters 
such as power spectral density of sequence auto-
correlation and compressibility are related and follow 
similar trends.  These fundamental metrics are possible 
candidates for measuring trend of increase or decrease in 
K(x).  However, also illustrated by these results (the 
unequal rate of change between the two metrics) are the 
loose bounds within which estimates of K(x) are related. 
Other methods of estimating K(x) are described in [4].  In 
the next section we introduce a method for attacking the 
issue of loose bounds in order to make complexity metrics 
useful for the purposes of assessing and providing 
information assurance. 
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5. Apparent Complexity 

 
   The results in Section 3 give an upper bound on 
complexity increase due to computational operations, but 
perhaps one can do better.  In fact, the size of the shortest 
program one can find to produce a particular string is the 
best estimate for K(S).  Since Kolmogorov Complexity is 
unknowable, the best that we can do is estimate well.  
This motivates the idea of apparent complexity: the best 
attainable estimate of K(S) given the limited information 
available to a particular party.  The benefit or possible 
way to exploit the idea of apparent complexity is that a 
user generating a string should have the best idea of how 
hard it is to generate the string. There are many reasons 
why a user may not choose to generate a string using the 
minimal size program.  Perhaps a longer program can 
execute faster, or perhaps the generator is unknowingly 
using an inefficient process.  However, the generator of a 
string of data is presumed to have knowledge of the 
process used to generate that data.  This may in fact make 
the non-computability of Kolmogorov Complexity an 
asset: a good candidate for use in providing information 
assurance, for the follow reason.  The information system 
designer or an authorized user generating data should 
have better knowledge of the data process than an 
attacker.  An attacker cannot simply compute the optimal 
process.  Additionally, conservation of apparent 
complexity enables abnormalities to be tracked when the 
expected number of computational operations is not 
utilized in transforming string x into string y.   Thus, even 
if one cannot know or compute the most efficient process 
for creating a string of data, one can at least gain benefit 
from ensuring through monitoring resources that the 
expected process is used.  This type of assurance has in 
fact been used informally to detect network security 
problems for many years.  Discrepancies in computer 
account charges have lead to detection of attack [10].  The 
idea of using Kolmogorov Complexity provides the 
possibility of using this type of technique on a more 
fundamental level where knowledge about the 
information content would not be required to determine 
unauthorized activity.  The term apparent complexity will 
be used to reflect the best measurement of Kolmogorov 
complexity available to the party undertaking the 
measurement. 
 
5.1 Process vs. Data Complexity 
 
   Apparent complexity can be applied to the problem of 
information assurance in two ways.  As discussed above, 
conservation of apparent complexity may enable detecting 
and correcting abnormal behavior.  Another method of 
using apparent complexity for information assurance is in 
the identification of weak areas or vulnerabilities in the 
system. Consider the postulate that the more apparently 
complex the data, the more difficult for an attacker to 

understand the data and exploit the system.  Thus, the 
more apparently complex, the less vulnerable and vice 
versa.  One proposed metric for vulnerability relates to 
evaluating the apparent complexity of the concatenated 
input and output K(X.Y).  This relates to the joint 
complexity of the data input and output from a certain 
process (Black Box).  The lower the complexity of 
K(X.Y) the easier the data is for an attacker to understand, 
thus we will regard K(X.Y) as a measure of data 
vulnerability.  A competing metric is the relative 
complexity K(Y|X) of the process.  This is the “work” 
done on the information by the process, or the complexity 
added to or removed from X to produce Y.    Thus K(Y|X) 
is a measure of process vulnerability. The relationships 
between these respective complexity metrics and the 
black box process is shown in Figure 3. 
 
 

 

Figure 3. Process vs. data vulnerabilities. 

 
  Data vulnerability relates to how vulnerable a system is 
to an attacker knowing information.  This type is perhaps 
best measured by K(X.Y), where the cumulative 
complexity of input and output data is observed to 
measure the difficulty an attacker would face in 
decrypting or identifying messages contained in input and 
output.   For example, hopefully K(encrypted message) 
appears >> K(decrypted message) to the casual observer 
and is only recognized to be on the order of K(decrypted 
message) to an authorized user with the correct key after 
the decryption algorithm has been run.  
  Process vulnerability relates a system’s susceptibility to 
an attacker understanding the processes that manipulate 
information.  This vulnerability is best quantified by the 
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complexity injected or removed from the data by the 
process at work.  For example, a copy or pass-through 
process adds little complexity, K(Y|X) is zero.  But if 
encrypted data is sent through the copy process, K(X.Y) 
will be high.  The attacker will be unable to discern the 
messages that are sent, but can learn to perhaps simulate 
this particular black box quite effectively. Whereas if 
plain text data is sent through the copy process K(X.Y) 
will be low, and in addition to understanding the process 
at work, and attacker may be able to know the particular 
messages that are sent. Both vulnerabilities are 
undesirable and represent two different dimensions of 
vulnerability to be avoided.  To make systems secure one 
must maximize both process and data complexity to a 
non-authorized user while keeping the systems simple to 
authorized users.   Proper accounting of K(Y|X) and 
K(X.Y) throughout the system will enable both 
identification of weak areas as well as identification of 
foul play through the conservation principles discussed 
earlier.      

6.  Vulnerability Reduction by means of 
System Optimization 
 
   In this section issues related to system optimization that 
can be achieved through Kolmogorov Complexity and 
various related tradeoffs are discussed. Compression and 
security are strongly linked in that they are bounded 
optimally by the most random sequence that can be 
produced.  But smallest program size is not the only or 
even most important performance metric.  Execution time 
is and example of another metric that must be considered. 
The tradeoff is indicated in Figure 4, where the possibility 
of having programs with large K(X) and small execution 
time and vice versa are highlighted. 
 

Solution Space Tradeoff

K(x)

T(x)

Small Program,
Long Execution Time

Long Program,
Small Execution Time

 
Figure 4. Program size vs. speed tradeoffs. 

 
   Through the use of active network techniques [11] the 
tradeoff indicated may be dynamically addressed using a 
concept called Active Packet Morphing for network 

optimization.  As shown in Figure 5, changing the form of 
information from data to code as information flows 
through a system can optimize CPU resources and 
bandwidth resources. 
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Figure 5. Active packet morphing for network 
optimization. 
   
   This idea can be extended to optimize or prevent 
adverse effects from critical resources in addition to 
bandwidth and CPU.  Memory, time of execution or 
buffer space could be use to trade off forms of data 
representation to optimize certain system parameters.  The 
ability of data to change form within a system opens up 
multiple optimization paths that were previously invariant 
in the system. Rigorous security quantification resulting 
from this work allows active packets to morph by adding 
the required security overhead along specific 
communication links such that the security of the link 
along with the security of the morphed packet yield the 
proper level of security required by a given policy. Thus, 
security overhead is minimized. 
  Another parameter that can optimize system resources is 
the knowledge of how a piece of data is used.  MP3 audio 
is a good example of how leaving out information 
(specifically that which is undetectable by the human ear) 
can optimize data size.  We introduce here the idea of  
“necessary” data to augment the idea of  “sufficient” data 
or sufficient statistics that represent all information 
contained in the original data [3]. Sufficient 
representation of data contains all the information that the 
source data contains.  Necessary data contains only the 
information that the source data contains that the 
destination instrument can effectively use.  If one 
efficiently encapsulates all the information in source data 
in a statistical parameter one may have achieved a 
minimum sufficient statistic.  If one further reduces this 
statistic such that one encapsulates only the information 
that is usable by the end node, one has obtained the 
minimal necessary sufficient statistic.  Thus, Kolmogorov 
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Complexity related ideas have tremendous impact for 
system optimization as well as security.   

7.  Automated Discovery of Vulnerabilities 
without a priori Knowledge of Vulnerability 
Types  
 
  An information system can be designed in such a manner 
that the apparent complexity of the system under attack 
can be determined with respect to the attacker and that 
information used to maximize the distance in the apparent 
complexity between the attacker and defenders in an 
automatically reconstituted system. An Active Network 
[11] is an ideal environment in which to experiment with 
an implementation of automated system reconstitution 
because it provides extreme flexibility in fine-grain code 
movement and composition of code. Apparent complexity 
is used to reconstitute the system such that the complexity 
difference is maximized between legitimate users and 
attackers of the system. In this section, the discussion is 
limited to the automated hardening of a system based 
upon information about an attacker and a new form of 
vulnerability analysis, called complexity-based 
vulnerability analysis. 
  The motivation for complexity-based vulnerability 
analysis comes from the fact that vulnerability analysis 
tools today require types of vulnerabilities to be known a 
priori. This is unacceptable, but understandable given the 
challenge of finding all potential vulnerabilities in a 
system. Information assurance is a hard problem in part 
because it involves the application of the scientific 
method by a defender to determine a means of evaluating 
and thwarting the scientific method applied by an 
attacker. This self-reference of scientific methods would 
seem to imply a non-halting cycle of hypotheses and 
experimental validation being applied by both offensive 
and defensive entities. Information assurance depends 
upon the ability to discover the relationships governing 
this cycle and then quantifying and measuring the 
progress made by both an attacker and defender. This 
work attempts to lay the foundation for quantifying 
information assurance. 
  Quantification is necessary because tools have been 
developed to measure and analyze security assuming 
rigorously defined security metrics exist. See [12] for an 
example of such a tool whose sample vulnerability chain 
output is shown in Figure 6. The numbers shown in 
Figure 6 are opportunities for an attacker to move across 
vulnerabilities. More precisely, tools such as these rely on 
an “insecurity flow” metric. However, a rigorously 
defined metric has not yet been derived. One focus of this 
paper is upon mathematically quantifying and refining 
insecurity flows. It is extremely important that a proper 
metric space is chosen, because the entire foundation of 
Information Assurance will rest upon this space. 
Particularly notable is the fact that relationships involving 

physics of information are being developed whose 
operations will be facilitated by the choice of metric. 
 

 
Figure 6. Vulnerability results from an analysis 
tool. 
 
  Any vulnerability analysis technique for information 
assurance must account for the innovation of an attacker. 
Such a metric was suggested about 700 years ago by 
William of Ockham [13]. Ockham’s Razor has been the 
basis of much of this paper and the complexity-based 
vulnerability method to be presented. The salient point of 
Ockham’s Razor and complexity-based vulnerability 
analysis is that the better one understands a phenomenon, 
the more concisely the phenomenon can be described. 
This is the essence of the goal of science: to develop 
theories that require a minimal amount of irrelevant 
information, all the knowledge required to describe a 
phenomenon should be algorithmically contained in 
formulae. 

7.1 Mozart and Vulnerability Analysis 
 
  Science is art and art is science. One of the most 
mathematical of art forms is the composition of music. 
Music is compressed and transported over the Internet 
very frequently and most listeners of such music probably 
have little interest in the compression ratio of a particular 
piece of music. However, this piece of information can be 
very interesting and informative with regard to the 
complexity of a piece of music. One would expect an 
incompressible piece of music to be highly complex; 
perhaps bordering on random noise; while a highly 
compressible piece of music would have a very simple 
repetitive nature. Most people would probably prefer 
music that falls in a mid-level range of complexity; 
sounds that are not repetitious and boring yet not random 
and annoying, but follow an internal pattern in the 
listeners’ minds. Music is a mathematical sequence that 
the composer is posing to the listener; the more easily the 
listener can extrapolate the sequence without being too 
challenged or too bored the more pleasing the music 
sounds. Carrying the music analogy forward in a more 



8 

explicit manner, consider the listener as an attacker and 
the composer as the designer of an information system. If 
a user has a preference for a given type of music, a sample 
of that music can be included as a hypothesis in an MML-
based complexity analysis. The lower the complexity, the 
more appealing the music to that particular listener. The 
more easily the listener can extrapolate the musical 
sequence, the more vulnerable the system.  
  Imagine the composer who wishes his music to be 
enjoyed by only a specific group of listeners and no 
others. The composer is constrained from generating a 
completely invulnerable system, that is, totally random, 
because the composer wants the music to be meaningful 
to at least some potential group of listeners. Relating this 
analogy to the hydrostatic test that was mentioned in the 
introduction to this paper, vulnerability is the 
quantification of the potential leakage of music that is 
enjoyable to unintended listeners. 
   In a very quick experiment, the following three pieces 
of music were tested for complexity: Beethoven's Sonata 
Op. 27, No. 2 ("Moonlight"), Mozart's Sonata in A Major 
("Alla Turka"), and Philip Glass's Opening to 
"Glassworks". The encoding explicitly represents notes, 
timing, dynamics, and phrasing. Beethoven's Moonlight 
Sonata has a complexity rating of 0.13, Mozart's Sonata 
has a complexity rating of 0.16, and Glass’s Introduction 
to Glassworks has a complexity of 0.03 based upon then 
inverse compression ratio. Philip Glass makes extreme 
use of repetitious arpeggios in his work, thus the low 
complexity rating. One of the authors expected Beethoven 
to have a slightly higher complexity than Mozart by a 
small amount, but it was the reverse in this case. Note that 
one could decompose the overall complexity to determine 
the complexity of a composer’s use of rhythm, note 
structure, phrasing, or other musical components. Once a 
composer’s typical complexity band is benchmarked; this 
type of analysis could be used as an indicator to determine 
authenticity.  Additionally, one could conjecture that 
“learning” to model Beethoven or Mozart might be more 
difficult than other composers. 

7.2 Demonstration of Complexity-based Vulnerability 
Analysis 
  
  Experimental validation of complexity-based 
vulnerability analysis has begun using a model 
information system that has been implemented in 
Mathematica. The goal is to determine the vulnerability, 
not only of the overall system, but also of system 
components. Vulnerability analysis should be done 
without any a priori knowledge about system operation or 
knowledge of particular types of vulnerabilities. Relating 
this mechanism to the hydrostatic testing mentioned in the 
introduction to this paper, one does not have to 
understand the motion and dynamics of every molecule in 

order to determine a leak. Expert systems and 
vulnerability analysis tools that rely upon rules identifying 
particular types of vulnerabilities, in other words, 
attempting to understand every intricate detail of a system 
and its vulnerabilities, are inherently brittle and, in fact, 
meaningless against an innovative attacker. Thus, the 
Mathematica information system model shown in Figure 
7 purposely does not include component descriptions or 
explanations because the goal is to analyze the system as 
a black box with respect to vulnerability. The point is that 
vulnerability analysis can be done without having to know 
the details of the system. At the end of this section, the 
functions of the analyzed components are mentioned. It 
should then make intuitive sense that a particular 
component that was performing a simple operation had a 
lower complexity than one performing a more complex 
operation. 
 

 
Figure 7. Mathematica System Model 
Components. 
 
  Each component of the Mathematica information system 
contains probe points through which bit level input and 
output can be collected. A complexity function based 
upon a simple inverse compression ratio is used as an 
estimate of complexity. The intent is to experiment with 
better complexity measures as this project continues. 
Figures 8, 9, and 10 show results from complexity 
measures taken of accumulated input and output of three 
separate components of the information system. The 
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graphs show the complexity of bit-level input and output 
strings concatenated together. That is, observe an input 
sequence at the bit-level and concatenate with an output 
sequence at the bit-level. This input/output concatenation 
is for either the entire system or for components of the 
system. If there is low complexity in the input/output 
observations, then it is likely to be easy for an attacker to 
understand that component of the system. Note that these 
graphs are showing estimates of Kolmogorov Complexity. 
If MML were used, the attacker's hypothesis would be 
used to determine the complexity relative to a particular 
attacker. In Figures 8, 9, and 10, the X-axis is the number 
of input and output observations concatenated to form a 
single string of bits. The particular complexity estimate 
used in this example is very poor; however, an ongoing 
area of research is to improve complexity estimates. 
Because of the inaccurate complexity metric, all the 
figures show a rising complexity with the number of 
accumulated observations. However, notice the rate at 
which the complexity rises in each of the figures. It would 
appear that Component E is most vulnerable due to its 
low rate of increase in complexity while Component B 
appears to be the least vulnerable due to its steeper rise in 
complexity. These results make intuitive sense because 
Component B is simply transmitting data without any 
form of protection while Component B is adding noise to 
the data. This vulnerability method does not take into 
account whether a component reduced or increased 
complexity; in other words whether the change was 
endothermic or exothermic complexity behavior. This 
project will extend this analysis with further work 
utilizing information distance as a vulnerability analysis 
technique. 
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Figure 8. Complexity-Based vulnerability 
analysis of component C. 

 

Number of Accumulated Observations Vs Complexity Metric
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Figure 9. Complexity-Based Analysis of 
Component B.  

 
 
Number of Accumulated Observations Vs Complexity
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Figure 10. Complexity-Based Vulnerability 
Analysis of Component E. 

 

These results show that vulnerabilities can be systemically 
discovered. When used in an MML approach to 
complexity measurement, apparent complexity, that is, 
complexity as seen by a particular attacker can be 
determined. Thus, this work has led towards automatic 
generation of vulnerabilities in graphical form similar to 
Figure , but without requiring expert knowledge of each 
type of vulnerability and in a more complete manner, 
depending upon the number of components analyzed. 
Note that all possible combination of components must be 
analyzed in this manner. Design of a general-purpose 
automated tool that can perform this type of vulnerability 
analysis is under construction. 
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8. Conclusions 
 
  Fundamental properties of information must be utilized 
to move the study of information assurance to a proactive 
versus reactive level.  This work has identified the 
inherent property of Kolmogorov Complexity as a 
possible parameter for this task.  Numerous opportunities 
exist for exploiting Kolmogorov Complexity to achieve 
security and network optimization.  Two possible 
opportunities that were explored in this paper were 
utilization of Kolmogorov Complexity like metrics as 
conserved parameters to detect abnormal system behavior 
and Complexity-based vulnerability analysis. This paper 
has distinguished between data and process 
vulnerabilities, both of which can be systemically 
discovered without a priori knowledge of vulnerability 
types. When used in an MML approach to complexity 
measurement, apparent complexity, that is, complexity as 
seen by a particular attacker can be determined. This work 
leads towards automatic generation of vulnerabilities 
through multiple vulnerability chains without requiring 
expert knowledge of each type of vulnerability. Further 
research is necessary to develop suitable metrics and 
applications for these ideas to bear fruit.  
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